Cargando…
Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919486/ https://www.ncbi.nlm.nih.gov/pubmed/17537817 http://dx.doi.org/10.1093/nar/gkm372 |
_version_ | 1782134179796877312 |
---|---|
author | Pettersen, Henrik Sahlin Sundheim, Ottar Gilljam, Karin Margaretha Slupphaug, Geir Krokan, Hans Einar Kavli, Bodil |
author_facet | Pettersen, Henrik Sahlin Sundheim, Ottar Gilljam, Karin Margaretha Slupphaug, Geir Krokan, Hans Einar Kavli, Bodil |
author_sort | Pettersen, Henrik Sahlin |
collection | PubMed |
description | DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin. |
format | Text |
id | pubmed-1919486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-19194862007-07-24 Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms Pettersen, Henrik Sahlin Sundheim, Ottar Gilljam, Karin Margaretha Slupphaug, Geir Krokan, Hans Einar Kavli, Bodil Nucleic Acids Res Molecular Biology DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin. Oxford University Press 2007-06 2007-05-30 /pmc/articles/PMC1919486/ /pubmed/17537817 http://dx.doi.org/10.1093/nar/gkm372 Text en © 2007 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Molecular Biology Pettersen, Henrik Sahlin Sundheim, Ottar Gilljam, Karin Margaretha Slupphaug, Geir Krokan, Hans Einar Kavli, Bodil Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title | Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title_full | Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title_fullStr | Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title_full_unstemmed | Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title_short | Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms |
title_sort | uracil–dna glycosylases smug1 and ung2 coordinate the initial steps of base excision repair by distinct mechanisms |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919486/ https://www.ncbi.nlm.nih.gov/pubmed/17537817 http://dx.doi.org/10.1093/nar/gkm372 |
work_keys_str_mv | AT pettersenhenriksahlin uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms AT sundheimottar uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms AT gilljamkarinmargaretha uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms AT slupphauggeir uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms AT krokanhanseinar uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms AT kavlibodil uracildnaglycosylasessmug1andung2coordinatetheinitialstepsofbaseexcisionrepairbydistinctmechanisms |