Cargando…

Non-linear dimensionality reduction of signaling networks

BACKGROUND: Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF) can act as a proapoptotic or prosurvival...

Descripción completa

Detalles Bibliográficos
Autores principales: Ivakhno, Sergii, Armstrong, J Douglas
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1925119/
https://www.ncbi.nlm.nih.gov/pubmed/17559646
http://dx.doi.org/10.1186/1752-0509-1-27
_version_ 1782134240317538304
author Ivakhno, Sergii
Armstrong, J Douglas
author_facet Ivakhno, Sergii
Armstrong, J Douglas
author_sort Ivakhno, Sergii
collection PubMed
description BACKGROUND: Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF) can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling. RESULTS: Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I) apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF) and insulin and (II) combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA) and Partial Least Squares – Discriminant analysis (PLS-DA) were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN) and quadratic discriminant analysis (QDA), apoptosis intensity can be predicted for different combinations of TNF, EGF and insulin. Prediction accuracy was highest when early activation time points in the apoptosis signaling network were used to predict apoptosis rates at later time points. Extended Isomap also outperformed PCA on the AfCS double ligand screen data. Isomap identified more functionally coherent clusters than PCA and captured more information in the first two-components. The Isomap projection performs slightly worse when more signaling networks are analyzed; suggesting that the mapping function between cues and responses becomes increasingly non-linear when large signaling pathways are considered. CONCLUSION: We developed and applied extended Isomap approach for the analysis of cell signaling networks. Potential biological applications of this method include characterization, visualization and clustering of different treatment conditions (i.e. low and high doses of TNF) in terms of changes in intracellular signaling they induce.
format Text
id pubmed-1925119
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-19251192007-07-20 Non-linear dimensionality reduction of signaling networks Ivakhno, Sergii Armstrong, J Douglas BMC Syst Biol Research Article BACKGROUND: Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF) can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling. RESULTS: Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I) apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF) and insulin and (II) combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA) and Partial Least Squares – Discriminant analysis (PLS-DA) were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN) and quadratic discriminant analysis (QDA), apoptosis intensity can be predicted for different combinations of TNF, EGF and insulin. Prediction accuracy was highest when early activation time points in the apoptosis signaling network were used to predict apoptosis rates at later time points. Extended Isomap also outperformed PCA on the AfCS double ligand screen data. Isomap identified more functionally coherent clusters than PCA and captured more information in the first two-components. The Isomap projection performs slightly worse when more signaling networks are analyzed; suggesting that the mapping function between cues and responses becomes increasingly non-linear when large signaling pathways are considered. CONCLUSION: We developed and applied extended Isomap approach for the analysis of cell signaling networks. Potential biological applications of this method include characterization, visualization and clustering of different treatment conditions (i.e. low and high doses of TNF) in terms of changes in intracellular signaling they induce. BioMed Central 2007-06-08 /pmc/articles/PMC1925119/ /pubmed/17559646 http://dx.doi.org/10.1186/1752-0509-1-27 Text en Copyright © 2007 Ivakhno and Armstrong; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ivakhno, Sergii
Armstrong, J Douglas
Non-linear dimensionality reduction of signaling networks
title Non-linear dimensionality reduction of signaling networks
title_full Non-linear dimensionality reduction of signaling networks
title_fullStr Non-linear dimensionality reduction of signaling networks
title_full_unstemmed Non-linear dimensionality reduction of signaling networks
title_short Non-linear dimensionality reduction of signaling networks
title_sort non-linear dimensionality reduction of signaling networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1925119/
https://www.ncbi.nlm.nih.gov/pubmed/17559646
http://dx.doi.org/10.1186/1752-0509-1-27
work_keys_str_mv AT ivakhnosergii nonlineardimensionalityreductionofsignalingnetworks
AT armstrongjdouglas nonlineardimensionalityreductionofsignalingnetworks