Cargando…

Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype.

Characterisation of altered glycosylation of P-glycoprotein (P-gp) found associated with the absence of a multidrug resistance (MDR) phenotype in cell lines prompted an investigation to assess the role of post-translational processing in establishing P-gp efflux pump functionally. The clone A cell l...

Descripción completa

Detalles Bibliográficos
Autores principales: Kramer, R., Weber, T. K., Arceci, R., Ramchurren, N., Kastrinakis, W. V., Steele, G., Summerhayes, I. C.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2033717/
https://www.ncbi.nlm.nih.gov/pubmed/7710927
Descripción
Sumario:Characterisation of altered glycosylation of P-glycoprotein (P-gp) found associated with the absence of a multidrug resistance (MDR) phenotype in cell lines prompted an investigation to assess the role of post-translational processing in establishing P-gp efflux pump functionally. The clone A cell line used in this study displays a strong MDR phenotype mediated by high constitutive levels of expression of P-gp. Incubation of clone A cells with tunicamycin for different periods resulted in a time-dependent increase in daunorubicin accumulation, reflecting a reduction in P-gp function. Parallel experiments conducted with verapamil resulted in no loss of P-gp functionality in clone A cells. Reduction in surface-associated P-gp following exposure to tunicamycin was established by FACS analysis, Western blot analysis and immunoprecipitation of surface-iodinated P-gp. In addition, immunoprecipitation of P-gp from 32P-orthophosphate-labelled cells demonstrated reduced phosphorylation of P-gp associated with tunicamycin exposure. From these studies we conclude that glycosylation of P-gp is required to establish the cellular MDR phenotype. IMAGES: