Cargando…
Hyperthermia, thermotolerance and topoisomerase II inhibitors.
The cytoxicity of both intercalating (m-AMSA) and non-intercalating (VP16, VM26) topoisomerase II-targeting drugs is thought to occur via trapping DNA topoisomerase II on DNA in the form of cleavable complexes. First, analysis of cleavable complexes (detected as DNA double-strand breaks) by pulsed-f...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2033976/ https://www.ncbi.nlm.nih.gov/pubmed/7640214 |
Sumario: | The cytoxicity of both intercalating (m-AMSA) and non-intercalating (VP16, VM26) topoisomerase II-targeting drugs is thought to occur via trapping DNA topoisomerase II on DNA in the form of cleavable complexes. First, analysis of cleavable complexes (detected as DNA double-strand breaks) by pulsed-field gel electrophoresis confirmed the correlation between cleavable complex formation and cytotoxicity of three topoisomerase-targeting drugs in HeLa S3 cells (the order of effects being VM26 > m-AMSA > VP16). In contrast to many antineoplastic agents, hyperthermic treatments were found to protect cells against the toxicity of all three topoisomerase II drugs. Hyperthermia treatment does not alter drug accumulation but reduces the ability of the drug-topoisomerase II complex to form the cleavable complexes. Nuclear protein aggregation induced by heat at the sites of topoisomerase II-DNA interaction may explain such an effect. In thermotolerant cells, the toxic effects of VP16 but not m-AMSA were reduced. For both drugs, however, the status of thermotolerance did not affect cleavable complex formation by the drugs. Thus, protection against VP-16 toxicity seems not to be associated with heat-induced activation of the P-gp 170 pump or altered topoisomerase II-DNA interactions. Rather, a protective (heat shock protein mediated?) mechanism against non-intercalating topoisomerase II drugs seems to occur at a stage after DNA-drug interaction. Finally, heat treatment before topoisomerase II drug treatment reduced toxicity and cleavable complex formation in thermotolerant cells to about the same extent as in non-tolerant cells, consistent with the presumption of nuclear protein aggregation being responsible for this effect. |
---|