Cargando…

The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans

Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has...

Descripción completa

Detalles Bibliográficos
Autores principales: Morschhäuser, Joachim, Barker, Katherine S, Liu, Teresa T, Blaß-Warmuth, Julia, Homayouni, Ramin, Rogers, P. David
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048531/
https://www.ncbi.nlm.nih.gov/pubmed/17983269
http://dx.doi.org/10.1371/journal.ppat.0030164
_version_ 1782137157806194688
author Morschhäuser, Joachim
Barker, Katherine S
Liu, Teresa T
Blaß-Warmuth, Julia
Homayouni, Ramin
Rogers, P. David
author_facet Morschhäuser, Joachim
Barker, Katherine S
Liu, Teresa T
Blaß-Warmuth, Julia
Homayouni, Ramin
Rogers, P. David
author_sort Morschhäuser, Joachim
collection PubMed
description Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster transcription factor, designated as MRR1 (multidrug resistance regulator), that was coordinately upregulated with MDR1 in drug-resistant, clinical C. albicans isolates. Inactivation of MRR1 in two such drug-resistant isolates abolished both MDR1 expression and multidrug resistance. Sequence analysis of the MRR1 alleles of two matched drug-sensitive and drug-resistant C. albicans isolate pairs showed that the resistant isolates had become homozygous for MRR1 alleles that contained single nucleotide substitutions, resulting in a P683S exchange in one isolate and a G997V substitution in the other isolate. Introduction of these mutated alleles into a drug-susceptible C. albicans strain resulted in constitutive MDR1 overexpression and multidrug resistance. By comparing the transcriptional profiles of drug-resistant C. albicans isolates and mrr1Δ mutants derived from them and of C. albicans strains carrying wild-type and mutated MRR1 alleles, we defined the target genes that are controlled by Mrr1p. Many of the Mrr1p target genes encode oxidoreductases, whose upregulation in fluconazole-resistant isolates may help to prevent cell damage resulting from the generation of toxic molecules in the presence of fluconazole and thereby contribute to drug resistance. The identification of MRR1 as the central regulator of the MDR1 efflux pump and the elucidation of the mutations that have occurred in fluconazole-resistant, clinical C. albicans isolates and result in constitutive activity of this trancription factor provide detailed insights into the molecular basis of multidrug resistance in this important human fungal pathogen.
format Text
id pubmed-2048531
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-20485312007-11-29 The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans Morschhäuser, Joachim Barker, Katherine S Liu, Teresa T Blaß-Warmuth, Julia Homayouni, Ramin Rogers, P. David PLoS Pathog Research Article Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster transcription factor, designated as MRR1 (multidrug resistance regulator), that was coordinately upregulated with MDR1 in drug-resistant, clinical C. albicans isolates. Inactivation of MRR1 in two such drug-resistant isolates abolished both MDR1 expression and multidrug resistance. Sequence analysis of the MRR1 alleles of two matched drug-sensitive and drug-resistant C. albicans isolate pairs showed that the resistant isolates had become homozygous for MRR1 alleles that contained single nucleotide substitutions, resulting in a P683S exchange in one isolate and a G997V substitution in the other isolate. Introduction of these mutated alleles into a drug-susceptible C. albicans strain resulted in constitutive MDR1 overexpression and multidrug resistance. By comparing the transcriptional profiles of drug-resistant C. albicans isolates and mrr1Δ mutants derived from them and of C. albicans strains carrying wild-type and mutated MRR1 alleles, we defined the target genes that are controlled by Mrr1p. Many of the Mrr1p target genes encode oxidoreductases, whose upregulation in fluconazole-resistant isolates may help to prevent cell damage resulting from the generation of toxic molecules in the presence of fluconazole and thereby contribute to drug resistance. The identification of MRR1 as the central regulator of the MDR1 efflux pump and the elucidation of the mutations that have occurred in fluconazole-resistant, clinical C. albicans isolates and result in constitutive activity of this trancription factor provide detailed insights into the molecular basis of multidrug resistance in this important human fungal pathogen. Public Library of Science 2007-11 2007-11-02 /pmc/articles/PMC2048531/ /pubmed/17983269 http://dx.doi.org/10.1371/journal.ppat.0030164 Text en © 2007 Morschhäuser et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Morschhäuser, Joachim
Barker, Katherine S
Liu, Teresa T
Blaß-Warmuth, Julia
Homayouni, Ramin
Rogers, P. David
The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title_full The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title_fullStr The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title_full_unstemmed The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title_short The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
title_sort transcription factor mrr1p controls expression of the mdr1 efflux pump and mediates multidrug resistance in candida albicans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048531/
https://www.ncbi.nlm.nih.gov/pubmed/17983269
http://dx.doi.org/10.1371/journal.ppat.0030164
work_keys_str_mv AT morschhauserjoachim thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT barkerkatherines thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT liuteresat thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT blaßwarmuthjulia thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT homayouniramin thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT rogerspdavid thetranscriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT morschhauserjoachim transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT barkerkatherines transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT liuteresat transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT blaßwarmuthjulia transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT homayouniramin transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans
AT rogerspdavid transcriptionfactormrr1pcontrolsexpressionofthemdr1effluxpumpandmediatesmultidrugresistanceincandidaalbicans