Cargando…
MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules
The discovery and analysis of cis-regulatory modules (CRMs) in metazoan genomes is crucial for understanding the transcriptional control of development and many other biological processes. Cross-species sequence comparison holds much promise for improving computational prediction of CRMs, for elucid...
Autores principales: | Sinha, Saurabh, He, Xin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065892/ https://www.ncbi.nlm.nih.gov/pubmed/17997594 http://dx.doi.org/10.1371/journal.pcbi.0030216 |
Ejemplares similares
-
Alignment and Prediction of cis-Regulatory Modules Based on a Probabilistic Model of Evolution
por: He, Xin, et al.
Publicado: (2009) -
A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model
por: Guo, Haitao, et al.
Publicado: (2017) -
Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models
por: Wang, Hongyan, et al.
Publicado: (2013) -
Profile Comparer: a program for scoring and aligning profile hidden Markov models
por: Madera, Martin
Publicado: (2008) -
Stubb: a program for discovery and analysis of cis-regulatory modules
por: Sinha, Saurabh, et al.
Publicado: (2006)