Cargando…
METHODS FOR THE PURIFICATION OF THYMUS NUCLEI AND THEIR APPLICATION TO STUDIES OF NUCLEAR PROTEIN SYNTHESIS
Procedures are described for the purification of calf thymus nuclei using mild hypotonit shock to break intact cells, and layering techniques to remove cytoplasmic debris. Ficolc (a high polymer of sucrose) was dissolved in isotonic sucrose to give dense solutions suitable for gradient centrifugatio...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1964
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2106442/ https://www.ncbi.nlm.nih.gov/pubmed/14153483 |
Sumario: | Procedures are described for the purification of calf thymus nuclei using mild hypotonit shock to break intact cells, and layering techniques to remove cytoplasmic debris. Ficolc (a high polymer of sucrose) was dissolved in isotonic sucrose to give dense solutions suitable for gradient centrifugation. The method yields nuclei which can incorporate amino acids in vitro. Thymus nuclei isolated under isotonic conditions were incubated with C(14)-amino acids and later purified by centrifugation through dense sucrose solutions. The distribution of radioactivity in different nuclear proteins was measured and it was found that isotopic amino acids are actively incorporated into characteristically chromosomal proteins, such as the arginine-rich and lysine-rich histones. Protein synthesis in the nucleus is markedly inhibited by puromycin and by agents, such as 2,4-dinitrophenol, which inhibit ATP synthesis. The synthesis of histones is also inhibited by puromycin, but the uptake of several amino acids into the lysine-rich histone fraction seems less sensitive to puromycin inhibition than is uptake into the arginine-rich histones or other proteins of the nucleus. High resolution autoradiography using tritiated leucine and observing grain distribution over thin sections of isolated nuclei and whole cells shows that amino acid incorporation occurs within the nucleus and is not due to cytoplasmic contamination. |
---|