Cargando…

Diverse effects of beta-tubulin mutations on microtubule formation and function

We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta- tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the funct...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115142/
https://www.ncbi.nlm.nih.gov/pubmed/3290223
_version_ 1782140587008327680
collection PubMed
description We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta- tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules.
format Text
id pubmed-2115142
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151422008-05-01 Diverse effects of beta-tubulin mutations on microtubule formation and function J Cell Biol Articles We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta- tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2115142/ /pubmed/3290223 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Diverse effects of beta-tubulin mutations on microtubule formation and function
title Diverse effects of beta-tubulin mutations on microtubule formation and function
title_full Diverse effects of beta-tubulin mutations on microtubule formation and function
title_fullStr Diverse effects of beta-tubulin mutations on microtubule formation and function
title_full_unstemmed Diverse effects of beta-tubulin mutations on microtubule formation and function
title_short Diverse effects of beta-tubulin mutations on microtubule formation and function
title_sort diverse effects of beta-tubulin mutations on microtubule formation and function
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115142/
https://www.ncbi.nlm.nih.gov/pubmed/3290223