Cargando…

Nitrosylcobalamin Potentiates the Anti-Neoplastic Effects of Chemotherapeutic Agents via Suppression of Survival Signaling

BACKGROUND: Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malign...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauer, Joseph A., Lupica, Joseph A., Schmidt, Heidi, Morrison, Bei H., Haney, Rebecca M., Masci, Rhonda K., Lee, Rebecca M., DiDonato, Joseph A., Lindner, Daniel J.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117345/
https://www.ncbi.nlm.nih.gov/pubmed/18074035
http://dx.doi.org/10.1371/journal.pone.0001313
Descripción
Sumario:BACKGROUND: Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malignant cell lines. Chemotherapeutic agents often simultaneously induce an apoptotic signal and activation of NF-κB, which has the undesired effect of promoting cell survival. The specific aims of this study were to 1) measure the anti-tumor effects of NO-Cbl alone and in combination with conventional chemotherapeutic agents, and to 2) examine the mechanism of action of NO-Cbl as a single agent and in combination therapy. METHODOLOGY: Using anti-proliferative assays, electrophoretic mobility shift assay (EMSA), immunoblot analysis and kinase assays, we demonstrate an increase in the effectiveness of chemotherapeutic agents in combination with NO-Cbl as a result of suppressed NF-κB activation. RESULTS: Eighteen chemotherapeutic agents were tested in combination with NO-Cbl, in thirteen malignant cell lines, resulting in a synergistic anti-proliferative effect in 78% of the combinations tested. NO-Cbl pre-treatment resulted in decreased NF-κB DNA binding activity, inhibition of IκB kinase (IKK) enzymatic activity, decreased AKT activation, increased caspase-8 and PARP cleavage, and decreased cellular XIAP protein levels. CONCLUSION: The use of NO-Cbl to inhibit survival signaling may enhance drug efficacy by preventing concomitant activation of NF-κB or AKT.