Cargando…
Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning
In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By tra...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118067/ https://www.ncbi.nlm.nih.gov/pubmed/16380511 http://dx.doi.org/10.1084/jem.20051714 |
_version_ | 1782140940414091264 |
---|---|
author | Bhattacharya, Deepta Rossi, Derrick J. Bryder, David Weissman, Irving L. |
author_facet | Bhattacharya, Deepta Rossi, Derrick J. Bryder, David Weissman, Irving L. |
author_sort | Bhattacharya, Deepta |
collection | PubMed |
description | In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that ∼0.1–1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4(+) T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4(+) T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation. |
format | Text |
id | pubmed-2118067 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21180672007-12-13 Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning Bhattacharya, Deepta Rossi, Derrick J. Bryder, David Weissman, Irving L. J Exp Med Articles In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that ∼0.1–1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4(+) T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4(+) T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation. The Rockefeller University Press 2006-01-23 /pmc/articles/PMC2118067/ /pubmed/16380511 http://dx.doi.org/10.1084/jem.20051714 Text en Copyright © 2006, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Bhattacharya, Deepta Rossi, Derrick J. Bryder, David Weissman, Irving L. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title | Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title_full | Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title_fullStr | Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title_full_unstemmed | Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title_short | Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
title_sort | purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118067/ https://www.ncbi.nlm.nih.gov/pubmed/16380511 http://dx.doi.org/10.1084/jem.20051714 |
work_keys_str_mv | AT bhattacharyadeepta purifiedhematopoieticstemcellengraftmentofrarenichescorrectsseverelymphoiddeficiencieswithouthostconditioning AT rossiderrickj purifiedhematopoieticstemcellengraftmentofrarenichescorrectsseverelymphoiddeficiencieswithouthostconditioning AT bryderdavid purifiedhematopoieticstemcellengraftmentofrarenichescorrectsseverelymphoiddeficiencieswithouthostconditioning AT weissmanirvingl purifiedhematopoieticstemcellengraftmentofrarenichescorrectsseverelymphoiddeficiencieswithouthostconditioning |