Cargando…

High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells

The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is i...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyagi, Takuya, Gil, M. Pilar, Wang, Xin, Louten, Jennifer, Chu, Wen-Ming, Biron, Christine A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118450/
https://www.ncbi.nlm.nih.gov/pubmed/17846149
http://dx.doi.org/10.1084/jem.20070401
Descripción
Sumario:The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-γ induction, and NK cells are major producers of this cytokine. We report that NK cells have high basal STAT4 levels and sensitivity to type 1 IFN–mediated STAT4 activation for IFN-γ production. Increases in STAT1, driven during viral infection by either type 1 IFN or IFN-γ, are associated with decreased STAT4 access. Both STAT1 and STAT2 are important for antiviral defense, but STAT1 has a unique role in protecting against sustained NK cell IFN-γ production and resulting disease. The regulation occurs with an NK cell type 1 IFN receptor switch from a STAT4 to a STAT1 association. Thus, a fundamental characteristic of NK cells is high STAT4 bound to the type 1 IFN receptor. The conditions of infection result in STAT1 induction with displacement of STAT4. These studies elucidate the critical role of STAT4 levels in predisposing selection of specific signaling pathways, define the biological importance of regulation within particular cell lineages, and provide mechanistic insights for how this is accomplished in vivo.