Cargando…
High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells
The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is i...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118450/ https://www.ncbi.nlm.nih.gov/pubmed/17846149 http://dx.doi.org/10.1084/jem.20070401 |
_version_ | 1782141028825825280 |
---|---|
author | Miyagi, Takuya Gil, M. Pilar Wang, Xin Louten, Jennifer Chu, Wen-Ming Biron, Christine A. |
author_facet | Miyagi, Takuya Gil, M. Pilar Wang, Xin Louten, Jennifer Chu, Wen-Ming Biron, Christine A. |
author_sort | Miyagi, Takuya |
collection | PubMed |
description | The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-γ induction, and NK cells are major producers of this cytokine. We report that NK cells have high basal STAT4 levels and sensitivity to type 1 IFN–mediated STAT4 activation for IFN-γ production. Increases in STAT1, driven during viral infection by either type 1 IFN or IFN-γ, are associated with decreased STAT4 access. Both STAT1 and STAT2 are important for antiviral defense, but STAT1 has a unique role in protecting against sustained NK cell IFN-γ production and resulting disease. The regulation occurs with an NK cell type 1 IFN receptor switch from a STAT4 to a STAT1 association. Thus, a fundamental characteristic of NK cells is high STAT4 bound to the type 1 IFN receptor. The conditions of infection result in STAT1 induction with displacement of STAT4. These studies elucidate the critical role of STAT4 levels in predisposing selection of specific signaling pathways, define the biological importance of regulation within particular cell lineages, and provide mechanistic insights for how this is accomplished in vivo. |
format | Text |
id | pubmed-2118450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21184502008-04-01 High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells Miyagi, Takuya Gil, M. Pilar Wang, Xin Louten, Jennifer Chu, Wen-Ming Biron, Christine A. J Exp Med Articles The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-γ induction, and NK cells are major producers of this cytokine. We report that NK cells have high basal STAT4 levels and sensitivity to type 1 IFN–mediated STAT4 activation for IFN-γ production. Increases in STAT1, driven during viral infection by either type 1 IFN or IFN-γ, are associated with decreased STAT4 access. Both STAT1 and STAT2 are important for antiviral defense, but STAT1 has a unique role in protecting against sustained NK cell IFN-γ production and resulting disease. The regulation occurs with an NK cell type 1 IFN receptor switch from a STAT4 to a STAT1 association. Thus, a fundamental characteristic of NK cells is high STAT4 bound to the type 1 IFN receptor. The conditions of infection result in STAT1 induction with displacement of STAT4. These studies elucidate the critical role of STAT4 levels in predisposing selection of specific signaling pathways, define the biological importance of regulation within particular cell lineages, and provide mechanistic insights for how this is accomplished in vivo. The Rockefeller University Press 2007-10-01 /pmc/articles/PMC2118450/ /pubmed/17846149 http://dx.doi.org/10.1084/jem.20070401 Text en Copyright © 2007, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Miyagi, Takuya Gil, M. Pilar Wang, Xin Louten, Jennifer Chu, Wen-Ming Biron, Christine A. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title | High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title_full | High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title_fullStr | High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title_full_unstemmed | High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title_short | High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells |
title_sort | high basal stat4 balanced by stat1 induction to control type 1 interferon effects in natural killer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118450/ https://www.ncbi.nlm.nih.gov/pubmed/17846149 http://dx.doi.org/10.1084/jem.20070401 |
work_keys_str_mv | AT miyagitakuya highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells AT gilmpilar highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells AT wangxin highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells AT loutenjennifer highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells AT chuwenming highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells AT bironchristinea highbasalstat4balancedbystat1inductiontocontroltype1interferoneffectsinnaturalkillercells |