Cargando…
Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice
Caveolin-1 (Cav-1) is the principal structural component of caveolae organelles in smooth muscle cells, adipocytes, fibroblasts, epithelial cells, and endothelial cells (ECs). Cav-1–deficient (Cav-1 knockout [KO]) mice are viable and show increases of nitric oxide (NO) production in vasculature, car...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118452/ https://www.ncbi.nlm.nih.gov/pubmed/17893196 http://dx.doi.org/10.1084/jem.20062340 |
Sumario: | Caveolin-1 (Cav-1) is the principal structural component of caveolae organelles in smooth muscle cells, adipocytes, fibroblasts, epithelial cells, and endothelial cells (ECs). Cav-1–deficient (Cav-1 knockout [KO]) mice are viable and show increases of nitric oxide (NO) production in vasculature, cardiomyopathy, and pulmonary dysfunction. In this study, we generated EC-specific Cav-1–reconstituted (Cav-1 RC) mice and reexamined vascular, cardiac, and pulmonary phenotypes. Cav-1 KO pulmonary arteries had decreased smooth muscle contractility and increased endothelial NO synthase activation and hypotension; the latter two effects were rescued completely in Cav-1 RC mice. Cav-1 KO mice exhibited myocardial hypertrophy, pulmonary hypertension, and alveolar cell hyperproliferation caused by constitutive activation of p42/44 mitogen-activated protein kinase and Akt. Interestingly, in Cav-1 RC mice, cardiac hypertrophy and pulmonary hypertension were completely rescued, whereas alveolar hyperplasia was partially recovered because of the lack of rescue of Cav-1 in bronchiolar epithelial cells. These results provide clear physiological evidence supporting the important role of cell type–specific Cav-1 expression governing multiple phenotypes in the vasculature, heart, and lung. |
---|