Cargando…

Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell–mediated immunity via dendritic cells

We report a mechanism to induce combined and long-lived CD4(+) and CD8(+) T cell immunity to several mouse tumors. Surprisingly, the initial source of antigen is a single low dose of tumor cells loaded with α-galactosylceramide (α-GalCer) glycolipid (tumor/Gal) but lacking co-stimulatory molecules....

Descripción completa

Detalles Bibliográficos
Autores principales: Shimizu, Kanako, Kurosawa, Yuri, Taniguchi, Masaru, Steinman, Ralph M., Fujii, Shin-ichiro
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118481/
https://www.ncbi.nlm.nih.gov/pubmed/17923500
http://dx.doi.org/10.1084/jem.20070458
Descripción
Sumario:We report a mechanism to induce combined and long-lived CD4(+) and CD8(+) T cell immunity to several mouse tumors. Surprisingly, the initial source of antigen is a single low dose of tumor cells loaded with α-galactosylceramide (α-GalCer) glycolipid (tumor/Gal) but lacking co-stimulatory molecules. After tumor/Gal injection intravenously (i.v.), innate NKT and NK cells reject the tumor cells, some of which are taken up by dendritic cells (DCs). The DCs in turn cross-present glycolipid on CD1d molecules to NKT cells and undergo maturation. For B16 melanoma cells loaded with α-GalCer (B16/Gal), interferon γ–producing CD8(+) T cells develop toward several melanoma peptides, again after a single low i.v. dose of B16/Gal. In all four poorly immunogenic tumors tested, a single dose of tumor/Gal i.v. allows mice to become resistant to tumors given subcutaneously. Resistance requires CD4(+) and CD8(+) cells, as well as DCs, and persists for 6–12 mo. Therefore, several immunogenic features of DCs are engaged by the CD1d-mediated cross-presentation of glycolipid-loaded tumor cells, leading to particularly strong and long-lived adaptive immunity.