Cargando…

The Caspase-3 Precursor Has a Cytosolic and Mitochondrial Distribution: Implications for Apoptotic Signaling

Caspase-3–mediated proteolysis is a critical element of the apoptotic process. Recent studies have demonstrated a central role for mitochondrial proteins (e.g., Bcl-2 and cytochrome c) in the activation of caspase-3, by a process that involves interaction of several protein molecules. Using antibodi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mancini, Marie, Nicholson, Donald W., Roy, Sophie, Thornberry, Nancy A., Peterson, Erin P., Casciola-Rosen, Livia A., Rosen, Antony
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132665/
https://www.ncbi.nlm.nih.gov/pubmed/9508780
Descripción
Sumario:Caspase-3–mediated proteolysis is a critical element of the apoptotic process. Recent studies have demonstrated a central role for mitochondrial proteins (e.g., Bcl-2 and cytochrome c) in the activation of caspase-3, by a process that involves interaction of several protein molecules. Using antibodies that specifically recognize the precursor form of caspase-3, we demonstrate that the caspase-3 proenzyme has a mitochondrial and cytosolic distribution in nonapoptotic cells. The mitochondrial caspase-3 precursor is contained in the intermembrane space. Delivery of a variety of apoptotic stimuli is accompanied by loss of mitochondrial caspase-3 precursor staining and appearance of caspase-3 proteolytic activity. We propose that the mitochondrial subpopulation of caspase-3 precursor molecules is coupled to a distinct subset of apoptotic signaling pathways that are Bcl-2 sensitive and that are transduced through multiple mitochondrion-specific protein interactions.