Cargando…
NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones.
The role of microsomal NADPH:cytochrome P450 reductase (P450 reductase) and cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase) in the mutagenicity of benzo(a)pyrene-3,6-quinone (BP-3,6-Q) was studied using supF tRNA gene as the mutational target. pUB3 carrying the supF tRNA gene upon...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2149967/ https://www.ncbi.nlm.nih.gov/pubmed/9514048 |
_version_ | 1782144560567156736 |
---|---|
author | Joseph, P. Jaiswal, A. K. |
author_facet | Joseph, P. Jaiswal, A. K. |
author_sort | Joseph, P. |
collection | PubMed |
description | The role of microsomal NADPH:cytochrome P450 reductase (P450 reductase) and cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase) in the mutagenicity of benzo(a)pyrene-3,6-quinone (BP-3,6-Q) was studied using supF tRNA gene as the mutational target. pUB3 carrying the supF tRNA gene upon transformation into the Escherichia coli ES87 cells exhibited a spontaneous mutation frequency of 0.62 x 10(-6). Chemical modification of the pUB3 DNA with BP-3,6-Q caused a fourfold increase in the mutation frequency, compared with the spontaneous mutations. P450 reductase catalysed metabolic activation of BP-3,6-Q into reactive products (semiquinone and reactive oxygen species), which caused a further increase in the mutation frequency to eightfold over spontaneous mutations. Oxygen radical scavengers (SOD and catalase) blocked the P450 reductase-activated BP-3,6-Q-induced stimulation of mutations. This indicates that redox cycling of the semiquinone leading to the generation of reactive oxygen species (ROS) was directly responsible for the increased mutation frequency of P450 reductase-activated BP-3,6-Q. Analysis of the mutation spectra revealed that P450 reductase-activated BP-3,6-Q showed a significantly higher preference for frameshift mutations, particularly deletions, compared with the spontaneous mutations and the mutations generated by benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). The single most frequently observed mutation by P450 reductase-activated quinone (semiquinone + ROS) was deletion of a single guanosine. Among the base substitutions, G:C --> T:A, G:C --> A:T and G:C --> C:G were also noticed. Interestingly, NQO1 competed with P450 reductase and specifically prevented the P450 reductase-activated BP-3,6-Q-induced mutations. However, BP-hydroquinone (BP-3,6-HQ) generated during the metabolic reduction of BP-3,6-Q catalysed by NQO1 caused specific mutations involving the deletion of a single cytosine from the DNA sequence 5'-CCCCC-3' in supF tRNA gene at a significantly high frequency. A similar cytosine deletion was also observed with benzoquinone hydroquinone (HQ), indicating that the deletion of cytosine is associated with a hydroquinone class of compounds. These results suggest that: (1) quinones and P450 reductase-activated products of quinones (semiquinones and ROS) are mutagenic compounds; (2) the mutational spectra of quinones, semiquinones and hydroquinones differ from each other with respect to their mutational frequency and specificity; (3) NQO1 competes with P450 reductase and protects the cells from quinone mutagenicity; and (4) the NQO1 -metabolized quinones (hydroquinones), if not eliminated, cause specific mutations that are not observed with quinones and P450 reductase-activated quinones (semiquinones and ROS). |
format | Text |
id | pubmed-2149967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-21499672009-09-10 NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. Joseph, P. Jaiswal, A. K. Br J Cancer Research Article The role of microsomal NADPH:cytochrome P450 reductase (P450 reductase) and cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase) in the mutagenicity of benzo(a)pyrene-3,6-quinone (BP-3,6-Q) was studied using supF tRNA gene as the mutational target. pUB3 carrying the supF tRNA gene upon transformation into the Escherichia coli ES87 cells exhibited a spontaneous mutation frequency of 0.62 x 10(-6). Chemical modification of the pUB3 DNA with BP-3,6-Q caused a fourfold increase in the mutation frequency, compared with the spontaneous mutations. P450 reductase catalysed metabolic activation of BP-3,6-Q into reactive products (semiquinone and reactive oxygen species), which caused a further increase in the mutation frequency to eightfold over spontaneous mutations. Oxygen radical scavengers (SOD and catalase) blocked the P450 reductase-activated BP-3,6-Q-induced stimulation of mutations. This indicates that redox cycling of the semiquinone leading to the generation of reactive oxygen species (ROS) was directly responsible for the increased mutation frequency of P450 reductase-activated BP-3,6-Q. Analysis of the mutation spectra revealed that P450 reductase-activated BP-3,6-Q showed a significantly higher preference for frameshift mutations, particularly deletions, compared with the spontaneous mutations and the mutations generated by benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). The single most frequently observed mutation by P450 reductase-activated quinone (semiquinone + ROS) was deletion of a single guanosine. Among the base substitutions, G:C --> T:A, G:C --> A:T and G:C --> C:G were also noticed. Interestingly, NQO1 competed with P450 reductase and specifically prevented the P450 reductase-activated BP-3,6-Q-induced mutations. However, BP-hydroquinone (BP-3,6-HQ) generated during the metabolic reduction of BP-3,6-Q catalysed by NQO1 caused specific mutations involving the deletion of a single cytosine from the DNA sequence 5'-CCCCC-3' in supF tRNA gene at a significantly high frequency. A similar cytosine deletion was also observed with benzoquinone hydroquinone (HQ), indicating that the deletion of cytosine is associated with a hydroquinone class of compounds. These results suggest that: (1) quinones and P450 reductase-activated products of quinones (semiquinones and ROS) are mutagenic compounds; (2) the mutational spectra of quinones, semiquinones and hydroquinones differ from each other with respect to their mutational frequency and specificity; (3) NQO1 competes with P450 reductase and protects the cells from quinone mutagenicity; and (4) the NQO1 -metabolized quinones (hydroquinones), if not eliminated, cause specific mutations that are not observed with quinones and P450 reductase-activated quinones (semiquinones and ROS). Nature Publishing Group 1998-03 /pmc/articles/PMC2149967/ /pubmed/9514048 Text en https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Joseph, P. Jaiswal, A. K. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title | NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title_full | NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title_fullStr | NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title_full_unstemmed | NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title_short | NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. |
title_sort | nad(p)h:quinone oxidoreductase 1 reduces the mutagenicity of dna caused by nadph:p450 reductase-activated metabolites of benzo(a)pyrene quinones. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2149967/ https://www.ncbi.nlm.nih.gov/pubmed/9514048 |
work_keys_str_mv | AT josephp nadphquinoneoxidoreductase1reducesthemutagenicityofdnacausedbynadphp450reductaseactivatedmetabolitesofbenzoapyrenequinones AT jaiswalak nadphquinoneoxidoreductase1reducesthemutagenicityofdnacausedbynadphp450reductaseactivatedmetabolitesofbenzoapyrenequinones |