Cargando…

Overcoming viral escape with vaccines that generate and display antigen diversity in vivo

BACKGROUND: Viral diversity is a key problem for the design of effective and universal vaccines. Virtually, a vaccine candidate including most of the diversity for a given epitope would force the virus to create escape mutants above the viability threshold or with a high fitness cost. PRESENTATION O...

Descripción completa

Detalles Bibliográficos
Autor principal: García-Quintanilla, Albert
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169210/
https://www.ncbi.nlm.nih.gov/pubmed/18034902
http://dx.doi.org/10.1186/1743-422X-4-125
Descripción
Sumario:BACKGROUND: Viral diversity is a key problem for the design of effective and universal vaccines. Virtually, a vaccine candidate including most of the diversity for a given epitope would force the virus to create escape mutants above the viability threshold or with a high fitness cost. PRESENTATION OF THE HYPOTHESIS: Therefore, I hypothesize that priming the immune system with polyvalent vaccines where each single vehicle generates and displays multiple antigen variants in vivo, will elicit a broad and long-lasting immune response able to avoid viral escape. TESTING THE HYPOTHESIS: To this purpose, I propose the use of yeasts that carry virus-like particles designed to pack the antigen-coding RNA inside and replicate it via RNA-dependent RNA polymerase. This would produce diversity in vivo limited to the target of interest and without killing the vaccine vehicle. IMPLICATIONS OF THE HYPOTHESIS: This approach is in contrast with peptide cocktails synthesized in vitro and polyvalent strategies where every cell or vector displays a single or definite number of mutants; but similarly to all them, it should be able to overcome original antigenic sin, avoid major histocompatibility complex restriction, and elicit broad cross-reactive immune responses. Here I discuss additional advantages such as minimal global antagonism or those derived from using a yeast vehicle, and potential drawbacks like autoimmunity. Diversity generated by this method could be monitored both genotypically and phenotypically, and therefore selected or discarded before use if needed.