Cargando…

A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin

Nucleostemin (NS) was identified as a stem cell– and cancer cell–enriched nucleolar protein that controls the proliferation of these cells. Here, we report the mechanism that regulates its dynamic shuttling between the nucleolus and nucleoplasm. The nucleolar residence of nucleostemin involves a tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Robert Y.L., McKay, Ronald D.G.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171593/
https://www.ncbi.nlm.nih.gov/pubmed/15657390
http://dx.doi.org/10.1083/jcb.200409053
Descripción
Sumario:Nucleostemin (NS) was identified as a stem cell– and cancer cell–enriched nucleolar protein that controls the proliferation of these cells. Here, we report the mechanism that regulates its dynamic shuttling between the nucleolus and nucleoplasm. The nucleolar residence of nucleostemin involves a transient and a long-term binding by the basic and GTP-binding domains, and a dissociation mechanism mediated by the COOH-terminal region. This cycle is propelled by the GTP binding state of nucleostemin. We propose that a rapid nucleostemin cycle is designed to translate extra- and intra-cellular signals into the amount of nucleostemin in the nucleolus in a bidirectional and fast manner.