Cargando…

Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin

Integrins are αβ heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin αVβ3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) un...

Descripción completa

Detalles Bibliográficos
Autores principales: Adair, Brian D., Xiong, Jian-Ping, Maddock, Catherine, Goodman, Simon L., Arnaout, M. Amin, Yeager, Mark
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171847/
https://www.ncbi.nlm.nih.gov/pubmed/15795319
http://dx.doi.org/10.1083/jcb.200410068
Descripción
Sumario:Integrins are αβ heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin αVβ3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) unless it is fully extended by activating stimuli. We generated a stable, soluble complex of the Mn(2+)-bound αVβ3 ectodomain with a fragment of fibronectin (FN) containing type III domains 7 to 10 and the EDB domain (FN7-EDB-10). Transmission electron microscopy and single particle image analysis were used to determine the three-dimensional structure of this complex. Most αVβ3 particles, whether unliganded or FN-bound, displayed compact, triangular shapes. A difference map comparing ligand-free and FN-bound αVβ3 revealed density that could accommodate the RGD-containing FN10 in proximity to the ligand-binding site of β3, with FN9 just adjacent to the synergy site binding region of αV. We conclude that the ectodomain of αVβ3 manifests a bent conformation that is capable of stably binding a physiological ligand in solution.