Cargando…

The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells

In Drosophila, activation of the apical caspase DRONC requires the apoptotic protease-activating factor homologue, DARK. However, unlike caspase activation in mammals, DRONC activation is not accompanied by the release of cytochrome c from mitochondria. Drosophila encodes two cytochrome c proteins,...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorstyn, Loretta, Mills, Kathryn, Lazebnik, Yuri, Kumar, Sharad
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172470/
https://www.ncbi.nlm.nih.gov/pubmed/15533997
http://dx.doi.org/10.1083/jcb.200408054
Descripción
Sumario:In Drosophila, activation of the apical caspase DRONC requires the apoptotic protease-activating factor homologue, DARK. However, unlike caspase activation in mammals, DRONC activation is not accompanied by the release of cytochrome c from mitochondria. Drosophila encodes two cytochrome c proteins, Cytc-p (DC4) the predominantly expressed species, and Cytc-d (DC3), which is implicated in caspase activation during spermatogenesis. Here, we report that silencing expression of either or both DC3 and DC4 had no effect on apoptosis or activation of DRONC and DRICE in Drosophila cells. We find that loss of function mutations in dc3 and dc4, do not affect caspase activation during Drosophila development and that ectopic expression of DC3 or DC4 in Drosophila cells does not induce caspase activation. In cell-free studies, recombinant DC3 or DC4 failed to activate caspases in Drosophila cell lysates, but remarkably induced caspase activation in extracts from human cells. Overall, our results argue that DARK-mediated DRONC activation occurs independently of cytochrome c.