Cargando…
Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides
BACKGROUND: A right-handed, calcium-dependent β-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca(2+). Two polypeptides were synthesised to contain two and fo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174480/ https://www.ncbi.nlm.nih.gov/pubmed/17908326 http://dx.doi.org/10.1186/1472-6807-7-63 |
_version_ | 1782145349416124416 |
---|---|
author | Scotter, Andrew J Guo, Meng Tomczak, Melanie M Daley, Margaret E Campbell, Robert L Oko, Richard J Bateman, David A Chakrabartty, Avijit Sykes, Brian D Davies, Peter L |
author_facet | Scotter, Andrew J Guo, Meng Tomczak, Melanie M Daley, Margaret E Campbell, Robert L Oko, Richard J Bateman, David A Chakrabartty, Avijit Sykes, Brian D Davies, Peter L |
author_sort | Scotter, Andrew J |
collection | PubMed |
description | BACKGROUND: A right-handed, calcium-dependent β-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca(2+). Two polypeptides were synthesised to contain two and four metal-binding sites, respectively, and exploit stacked tryptophan pairs to stabilise the fold and report on the conformational state of the polypeptide. RESULTS: Initial analysis of the two polypeptides in the presence of calcium suggested the polypeptides were disordered. The addition of lanthanum to these peptides caused aggregation. Upon further study by right angle light scattering and electron microscopy, the aggregates were identified as ordered protein filaments that required lanthanum to polymerize. These filaments could be disassembled by the addition of a chelating agent. A simple head-to-tail model is proposed for filament formation that explains the metal ion-dependency. The model is supported by the capping of one of the polypeptides with biotin, which disrupts filament formation and provides the ability to control the average length of the filaments. CONCLUSION: Metal ion-dependent, reversible protein filament formation is demonstrated for two designed polypeptides. The polypeptides form filaments that are approximately 3 nm in diameter and several hundred nm in length. They are not amyloid-like in nature as demonstrated by their behaviour in the presence of congo red and thioflavin T. A capping strategy allows for the control of filament length and for potential applications including the "decoration" of a protein filament with various functional moieties. |
format | Text |
id | pubmed-2174480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-21744802008-01-04 Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides Scotter, Andrew J Guo, Meng Tomczak, Melanie M Daley, Margaret E Campbell, Robert L Oko, Richard J Bateman, David A Chakrabartty, Avijit Sykes, Brian D Davies, Peter L BMC Struct Biol Research Article BACKGROUND: A right-handed, calcium-dependent β-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca(2+). Two polypeptides were synthesised to contain two and four metal-binding sites, respectively, and exploit stacked tryptophan pairs to stabilise the fold and report on the conformational state of the polypeptide. RESULTS: Initial analysis of the two polypeptides in the presence of calcium suggested the polypeptides were disordered. The addition of lanthanum to these peptides caused aggregation. Upon further study by right angle light scattering and electron microscopy, the aggregates were identified as ordered protein filaments that required lanthanum to polymerize. These filaments could be disassembled by the addition of a chelating agent. A simple head-to-tail model is proposed for filament formation that explains the metal ion-dependency. The model is supported by the capping of one of the polypeptides with biotin, which disrupts filament formation and provides the ability to control the average length of the filaments. CONCLUSION: Metal ion-dependent, reversible protein filament formation is demonstrated for two designed polypeptides. The polypeptides form filaments that are approximately 3 nm in diameter and several hundred nm in length. They are not amyloid-like in nature as demonstrated by their behaviour in the presence of congo red and thioflavin T. A capping strategy allows for the control of filament length and for potential applications including the "decoration" of a protein filament with various functional moieties. BioMed Central 2007-10-01 /pmc/articles/PMC2174480/ /pubmed/17908326 http://dx.doi.org/10.1186/1472-6807-7-63 Text en Copyright © 2007 Scotter et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Scotter, Andrew J Guo, Meng Tomczak, Melanie M Daley, Margaret E Campbell, Robert L Oko, Richard J Bateman, David A Chakrabartty, Avijit Sykes, Brian D Davies, Peter L Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title | Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title_full | Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title_fullStr | Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title_full_unstemmed | Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title_short | Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
title_sort | metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174480/ https://www.ncbi.nlm.nih.gov/pubmed/17908326 http://dx.doi.org/10.1186/1472-6807-7-63 |
work_keys_str_mv | AT scotterandrewj metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT guomeng metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT tomczakmelaniem metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT daleymargarete metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT campbellrobertl metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT okorichardj metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT batemandavida metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT chakrabarttyavijit metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT sykesbriand metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides AT daviespeterl metaliondependentreversibleproteinfilamentformationbydesignedbetarollpolypeptides |