Cargando…

The Four Distal Tyrosines Are Required for LAT-dependent Signaling in FcɛRI-mediated Mast Cell Activation

The linker for activation of T cells (LAT) is an adaptor protein critical for FcɛRI-mediated mast cell activation. LAT is a substrate of the tyrosine kinases activated after TCR and FcɛRI engagement. After phosphorylation of the cytosolic domain of LAT, multiple signaling molecules such as phospholi...

Descripción completa

Detalles Bibliográficos
Autores principales: Saitoh, Shin-ichiroh, Odom, Sandra, Gomez, Gregorio, Sommers, Connie L., Young, Howard A., Rivera, Juan, Samelson, Lawrence E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194190/
https://www.ncbi.nlm.nih.gov/pubmed/12953098
http://dx.doi.org/10.1084/jem.20030574
Descripción
Sumario:The linker for activation of T cells (LAT) is an adaptor protein critical for FcɛRI-mediated mast cell activation. LAT is a substrate of the tyrosine kinases activated after TCR and FcɛRI engagement. After phosphorylation of the cytosolic domain of LAT, multiple signaling molecules such as phospholipase C–γ1, Grb2, and Gads associate with phosphorylated LAT via their SH2 domains. The essential role of the four distal tyrosines in TCR-mediated signaling and T cell development has been demonstrated by experiments using LAT-deficient cell lines and genetically modified mice. To investigate the role of these four tyrosines of LAT in FcɛRI-mediated mast cell activation, bone marrow–derived mast cells from LAT-deficient mice were infected with retroviral vectors designed to express wild-type or mutant LAT. Examination of bone marrow–derived mast cells expressing various tyrosine to phenylalanine mutants in LAT demonstrates a differential requirement for these different binding sites. In these studies, assays of biochemical pathways, degranulation, and cytokine and chemokine release were performed. Finally, the role of these tyrosines was also evaluated in vivo using genetically modified animals. Deletion of all four distal tyrosines, and in particular, loss of the primary phospholipase C–γ-binding tyrosine had a significant effect on antigen-induced histamine release.