Cargando…

THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS

The Na(+) and K(+) content of non-metabolizing yeast cells was determined before and after monochromatic ultraviolet (UV) irradiation. UV facilitated the uptake of Na(+) into and the loss of K(+) from the cells (net ion flux); the effect is greatest for the shortest wavelength employed (239 mµ) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanders, Raymond T., Giese, Arthur C.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1959
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194933/
https://www.ncbi.nlm.nih.gov/pubmed/13620889
_version_ 1782147727404040192
author Sanders, Raymond T.
Giese, Arthur C.
author_facet Sanders, Raymond T.
Giese, Arthur C.
author_sort Sanders, Raymond T.
collection PubMed
description The Na(+) and K(+) content of non-metabolizing yeast cells was determined before and after monochromatic ultraviolet (UV) irradiation. UV facilitated the uptake of Na(+) into and the loss of K(+) from the cells (net ion flux); the effect is greatest for the shortest wavelength employed (239 mµ) and is partly dependent upon the presence of oxygen. The UV effect on net ion flux persists for at least 90 minutes during which tests were made and it occurs following dosages which are without measurable effect on colony formation. The UV effect on net ion flux is decreased by acidity and promoted by alkalinity. Addition of calcium ions in sufficient amount prevents the usual net ion flux changes observed in irradiated yeast. Increase in concentration gradient between the inside and the outside of the cell increases the net ion flux of irradiated yeast, Na(+) uptake leading K(+) loss in all cases. UV appears to act by disorganizing the constituents of the cell surface, permitting K(+) to leave the cell in exchange for Na(+). At low intensities of UV this ionic exchange approaches equivalence, but at higher intensities more Na(+) is taken up than K(+) is lost. Some evidence suggests that the Na(+) in excess over that exchanged for K(+) is adsorbed to charged groups produced by the photochemical effect of UV on the cell surface.
format Text
id pubmed-2194933
institution National Center for Biotechnology Information
language English
publishDate 1959
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21949332008-04-23 THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS Sanders, Raymond T. Giese, Arthur C. J Gen Physiol Article The Na(+) and K(+) content of non-metabolizing yeast cells was determined before and after monochromatic ultraviolet (UV) irradiation. UV facilitated the uptake of Na(+) into and the loss of K(+) from the cells (net ion flux); the effect is greatest for the shortest wavelength employed (239 mµ) and is partly dependent upon the presence of oxygen. The UV effect on net ion flux persists for at least 90 minutes during which tests were made and it occurs following dosages which are without measurable effect on colony formation. The UV effect on net ion flux is decreased by acidity and promoted by alkalinity. Addition of calcium ions in sufficient amount prevents the usual net ion flux changes observed in irradiated yeast. Increase in concentration gradient between the inside and the outside of the cell increases the net ion flux of irradiated yeast, Na(+) uptake leading K(+) loss in all cases. UV appears to act by disorganizing the constituents of the cell surface, permitting K(+) to leave the cell in exchange for Na(+). At low intensities of UV this ionic exchange approaches equivalence, but at higher intensities more Na(+) is taken up than K(+) is lost. Some evidence suggests that the Na(+) in excess over that exchanged for K(+) is adsorbed to charged groups produced by the photochemical effect of UV on the cell surface. The Rockefeller University Press 1959-01-20 /pmc/articles/PMC2194933/ /pubmed/13620889 Text en Copyright © Copyright, 1959, by The Rockefeller Institute This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Sanders, Raymond T.
Giese, Arthur C.
THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title_full THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title_fullStr THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title_full_unstemmed THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title_short THE EFFECT OF ULTRAVIOLET LIGHT ON THE SODIUM AND POTASSIUM COMPOSITION OF RESTING YEAST CELLS
title_sort effect of ultraviolet light on the sodium and potassium composition of resting yeast cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194933/
https://www.ncbi.nlm.nih.gov/pubmed/13620889
work_keys_str_mv AT sandersraymondt theeffectofultravioletlightonthesodiumandpotassiumcompositionofrestingyeastcells
AT giesearthurc theeffectofultravioletlightonthesodiumandpotassiumcompositionofrestingyeastcells
AT sandersraymondt effectofultravioletlightonthesodiumandpotassiumcompositionofrestingyeastcells
AT giesearthurc effectofultravioletlightonthesodiumandpotassiumcompositionofrestingyeastcells