Cargando…
Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells
Neovascularization is essential for growth and spread of primary and metastatic tumors. We have identified a novel cytokine, endothelial-monocyte activating polypeptide (EMAP) II, that potently inhibits tumor growth, and appears to have antiangiogenic activity. Mice implanted with Matrigel showed an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195582/ https://www.ncbi.nlm.nih.gov/pubmed/10430623 |
_version_ | 1782147878950535168 |
---|---|
author | Schwarz, Margaret A. Kandel, Jessica Brett, Jerald Li, Jun Hayward, Joanne Schwarz, Roderich E. Chappey, Olivier Wautier, Jean-Luc Chabot, John Gerfo, Paul Lo Stern, David |
author_facet | Schwarz, Margaret A. Kandel, Jessica Brett, Jerald Li, Jun Hayward, Joanne Schwarz, Roderich E. Chappey, Olivier Wautier, Jean-Luc Chabot, John Gerfo, Paul Lo Stern, David |
author_sort | Schwarz, Margaret A. |
collection | PubMed |
description | Neovascularization is essential for growth and spread of primary and metastatic tumors. We have identified a novel cytokine, endothelial-monocyte activating polypeptide (EMAP) II, that potently inhibits tumor growth, and appears to have antiangiogenic activity. Mice implanted with Matrigel showed an intense local angiogenic response, which EMAP II blocked by 76% (P < 0.001). Neovascularization of the mouse cornea was similarly prevented by EMAP II (P < 0.003). Intraperitoneally administered EMAP II suppressed the growth of primary Lewis lung carcinomas, with a reduction in tumor volume of 65% versus controls (P < 0.003). Tumors from human breast carcinoma–derived MDA-MB 468 cells were suppressed by >80% in EMAP II–treated animals (P < 0.005). In a lung metastasis model, EMAP II blocked outgrowth of Lewis lung carcinoma macrometastases; total surface metastases were diminished by 65%, and of the 35% metastases present, ≈80% were inhibited with maximum diameter <2 mm (P < 0.002 vs. controls). In growing capillary endothelial cultures, EMAP II induced apoptosis in a time- and dose-dependent manner, whereas other cell types were unaffected. These data suggest that EMAP II is a tumor-suppressive mediator with antiangiogenic properties allowing it to target growing endothelium and limit establishment of neovasculature. |
format | Text |
id | pubmed-2195582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1999 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21955822008-04-16 Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells Schwarz, Margaret A. Kandel, Jessica Brett, Jerald Li, Jun Hayward, Joanne Schwarz, Roderich E. Chappey, Olivier Wautier, Jean-Luc Chabot, John Gerfo, Paul Lo Stern, David J Exp Med Original Article Neovascularization is essential for growth and spread of primary and metastatic tumors. We have identified a novel cytokine, endothelial-monocyte activating polypeptide (EMAP) II, that potently inhibits tumor growth, and appears to have antiangiogenic activity. Mice implanted with Matrigel showed an intense local angiogenic response, which EMAP II blocked by 76% (P < 0.001). Neovascularization of the mouse cornea was similarly prevented by EMAP II (P < 0.003). Intraperitoneally administered EMAP II suppressed the growth of primary Lewis lung carcinomas, with a reduction in tumor volume of 65% versus controls (P < 0.003). Tumors from human breast carcinoma–derived MDA-MB 468 cells were suppressed by >80% in EMAP II–treated animals (P < 0.005). In a lung metastasis model, EMAP II blocked outgrowth of Lewis lung carcinoma macrometastases; total surface metastases were diminished by 65%, and of the 35% metastases present, ≈80% were inhibited with maximum diameter <2 mm (P < 0.002 vs. controls). In growing capillary endothelial cultures, EMAP II induced apoptosis in a time- and dose-dependent manner, whereas other cell types were unaffected. These data suggest that EMAP II is a tumor-suppressive mediator with antiangiogenic properties allowing it to target growing endothelium and limit establishment of neovasculature. The Rockefeller University Press 1999-08-02 /pmc/articles/PMC2195582/ /pubmed/10430623 Text en © 1999 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Original Article Schwarz, Margaret A. Kandel, Jessica Brett, Jerald Li, Jun Hayward, Joanne Schwarz, Roderich E. Chappey, Olivier Wautier, Jean-Luc Chabot, John Gerfo, Paul Lo Stern, David Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title | Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title_full | Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title_fullStr | Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title_full_unstemmed | Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title_short | Endothelial-Monocyte Activating Polypeptide Ii, a Novel Antitumor Cytokine That Suppresses Primary and Metastatic Tumor Growth and Induces Apoptosis in Growing Endothelial Cells |
title_sort | endothelial-monocyte activating polypeptide ii, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195582/ https://www.ncbi.nlm.nih.gov/pubmed/10430623 |
work_keys_str_mv | AT schwarzmargareta endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT kandeljessica endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT brettjerald endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT lijun endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT haywardjoanne endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT schwarzroderiche endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT chappeyolivier endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT wautierjeanluc endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT chabotjohn endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT gerfopaullo endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells AT sterndavid endothelialmonocyteactivatingpolypeptideiianovelantitumorcytokinethatsuppressesprimaryandmetastatictumorgrowthandinducesapoptosisingrowingendothelialcells |