Cargando…

A Novel Neural Wiskott-Aldrich Syndrome Protein (N-Wasp) Binding Protein, Wish, Induces Arp2/3 Complex Activation Independent of Cdc42

We identified a novel adaptor protein that contains a Src homology (SH)3 domain, SH3 binding proline-rich sequences, and a leucine zipper-like motif and termed this protein WASP interacting SH3 protein (WISH). WISH is expressed predominantly in neural tissues and testis. It bound Ash/Grb2 through it...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukuoka, Maiko, Suetsugu, Shiro, Miki, Hiroaki, Fukami, Kiyoko, Endo, Takeshi, Takenawa, Tadaomi
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196001/
https://www.ncbi.nlm.nih.gov/pubmed/11157975
Descripción
Sumario:We identified a novel adaptor protein that contains a Src homology (SH)3 domain, SH3 binding proline-rich sequences, and a leucine zipper-like motif and termed this protein WASP interacting SH3 protein (WISH). WISH is expressed predominantly in neural tissues and testis. It bound Ash/Grb2 through its proline-rich regions and neural Wiskott-Aldrich syndrome protein (N-WASP) through its SH3 domain. WISH strongly enhanced N-WASP–induced Arp2/3 complex activation independent of Cdc42 in vitro, resulting in rapid actin polymerization. Furthermore, coexpression of WISH and N-WASP induced marked formation of microspikes in Cos7 cells, even in the absence of stimuli. An N-WASP mutant (H208D) that cannot bind Cdc42 still induced microspike formation when coexpressed with WISH. We also examined the contribution of WISH to a rapid actin polymerization induced by brain extract in vitro. Arp2/3 complex was essential for brain extract–induced rapid actin polymerization. Addition of WISH to extracts increased actin polymerization as Cdc42 did. However, WISH unexpectedly could activate actin polymerization even in N-WASP–depleted extracts. These findings suggest that WISH activates Arp2/3 complex through N-WASP–dependent and –independent pathways without Cdc42, resulting in the rapid actin polymerization required for microspike formation.