Cargando…

Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells

The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Reinacher-Schick, Anke, Gumbiner, Barry M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196003/
https://www.ncbi.nlm.nih.gov/pubmed/11157977
_version_ 1782147973893849088
author Reinacher-Schick, Anke
Gumbiner, Barry M.
author_facet Reinacher-Schick, Anke
Gumbiner, Barry M.
author_sort Reinacher-Schick, Anke
collection PubMed
description The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or β-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3β and β-catenin. Therefore, it is likely to correspond to the previously characterized β-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of β-catenin, or alternatively, whether they could be involved in other functions of the protein that still must be determined.
format Text
id pubmed-2196003
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21960032008-05-01 Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells Reinacher-Schick, Anke Gumbiner, Barry M. J Cell Biol Original Article The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or β-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3β and β-catenin. Therefore, it is likely to correspond to the previously characterized β-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of β-catenin, or alternatively, whether they could be involved in other functions of the protein that still must be determined. The Rockefeller University Press 2001-02-05 /pmc/articles/PMC2196003/ /pubmed/11157977 Text en © 2001 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Original Article
Reinacher-Schick, Anke
Gumbiner, Barry M.
Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title_full Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title_fullStr Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title_full_unstemmed Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title_short Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells
title_sort apical membrane localization of the adenomatous polyposis coli tumor suppressor protein and subcellular distribution of the β-catenin destruction complex in polarized epithelial cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196003/
https://www.ncbi.nlm.nih.gov/pubmed/11157977
work_keys_str_mv AT reinacherschickanke apicalmembranelocalizationoftheadenomatouspolyposiscolitumorsuppressorproteinandsubcellulardistributionofthebcatenindestructioncomplexinpolarizedepithelialcells
AT gumbinerbarrym apicalmembranelocalizationoftheadenomatouspolyposiscolitumorsuppressorproteinandsubcellulardistributionofthebcatenindestructioncomplexinpolarizedepithelialcells