Cargando…

Isoprenylation is required for the processing of the lamin A precursor

The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina- associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200179/
https://www.ncbi.nlm.nih.gov/pubmed/2335559
_version_ 1782148280968282112
collection PubMed
description The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina- associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev- 1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5- 3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated.
format Text
id pubmed-2200179
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22001792008-05-01 Isoprenylation is required for the processing of the lamin A precursor J Cell Biol Articles The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina- associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev- 1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5- 3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated. The Rockefeller University Press 1990-05-01 /pmc/articles/PMC2200179/ /pubmed/2335559 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Isoprenylation is required for the processing of the lamin A precursor
title Isoprenylation is required for the processing of the lamin A precursor
title_full Isoprenylation is required for the processing of the lamin A precursor
title_fullStr Isoprenylation is required for the processing of the lamin A precursor
title_full_unstemmed Isoprenylation is required for the processing of the lamin A precursor
title_short Isoprenylation is required for the processing of the lamin A precursor
title_sort isoprenylation is required for the processing of the lamin a precursor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200179/
https://www.ncbi.nlm.nih.gov/pubmed/2335559