Cargando…
Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast
p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles i...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200829/ https://www.ncbi.nlm.nih.gov/pubmed/18231594 http://dx.doi.org/10.1371/journal.pone.0001507 |
_version_ | 1782148301837041664 |
---|---|
author | Di Ventura, Barbara Funaya, Charlotta Antony, Claude Knop, Michael Serrano, Luis |
author_facet | Di Ventura, Barbara Funaya, Charlotta Antony, Claude Knop, Michael Serrano, Luis |
author_sort | Di Ventura, Barbara |
collection | PubMed |
description | p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles in the p53 signaling network. To circumvent this complexity, we studied here the minimal requirements for functionally relevant p53 post-translational modifications by expressing human p53 together with its best characterized modifier Mdm2 in budding yeast. We find that expression of the human p53-Mdm2 module in yeast is sufficient to faithfully recapitulate key aspects of p53 regulation in higher eukaryotes, such as Mdm2-dependent targeting of p53 for degradation, sumoylation at lysine 386 and further regulation of this process by p14(ARF). Interestingly, sumoylation is necessary for the recruitment of p53-Mdm2 complexes to yeast nuclear bodies morphologically akin to human PML bodies. These results suggest a novel role for Mdm2 as well as for p53 sumoylation in the recruitment of p53 to nuclear bodies. The reductionist yeast model that was established and validated in this study will now allow to incrementally study simplified parts of the intricate p53 network, thus helping elucidate the core mechanisms of p53 regulation as well as test novel strategies to counteract p53 malfunctions. |
format | Text |
id | pubmed-2200829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22008292008-01-30 Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast Di Ventura, Barbara Funaya, Charlotta Antony, Claude Knop, Michael Serrano, Luis PLoS One Research Article p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles in the p53 signaling network. To circumvent this complexity, we studied here the minimal requirements for functionally relevant p53 post-translational modifications by expressing human p53 together with its best characterized modifier Mdm2 in budding yeast. We find that expression of the human p53-Mdm2 module in yeast is sufficient to faithfully recapitulate key aspects of p53 regulation in higher eukaryotes, such as Mdm2-dependent targeting of p53 for degradation, sumoylation at lysine 386 and further regulation of this process by p14(ARF). Interestingly, sumoylation is necessary for the recruitment of p53-Mdm2 complexes to yeast nuclear bodies morphologically akin to human PML bodies. These results suggest a novel role for Mdm2 as well as for p53 sumoylation in the recruitment of p53 to nuclear bodies. The reductionist yeast model that was established and validated in this study will now allow to incrementally study simplified parts of the intricate p53 network, thus helping elucidate the core mechanisms of p53 regulation as well as test novel strategies to counteract p53 malfunctions. Public Library of Science 2008-01-30 /pmc/articles/PMC2200829/ /pubmed/18231594 http://dx.doi.org/10.1371/journal.pone.0001507 Text en Di Ventura et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Di Ventura, Barbara Funaya, Charlotta Antony, Claude Knop, Michael Serrano, Luis Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title | Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title_full | Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title_fullStr | Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title_full_unstemmed | Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title_short | Reconstitution of Mdm2-Dependent Post-Translational Modifications of p53 in Yeast |
title_sort | reconstitution of mdm2-dependent post-translational modifications of p53 in yeast |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200829/ https://www.ncbi.nlm.nih.gov/pubmed/18231594 http://dx.doi.org/10.1371/journal.pone.0001507 |
work_keys_str_mv | AT diventurabarbara reconstitutionofmdm2dependentposttranslationalmodificationsofp53inyeast AT funayacharlotta reconstitutionofmdm2dependentposttranslationalmodificationsofp53inyeast AT antonyclaude reconstitutionofmdm2dependentposttranslationalmodificationsofp53inyeast AT knopmichael reconstitutionofmdm2dependentposttranslationalmodificationsofp53inyeast AT serranoluis reconstitutionofmdm2dependentposttranslationalmodificationsofp53inyeast |