Cargando…
Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory
BACKGROUND: Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is d...
Autores principales: | Luo, Feng, Yang, Yunfeng, Zhong, Jianxin, Gao, Haichun, Khan, Latifur, Thompson, Dorothea K, Zhou, Jizhong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212665/ https://www.ncbi.nlm.nih.gov/pubmed/17697349 http://dx.doi.org/10.1186/1471-2105-8-299 |
Ejemplares similares
-
Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory
por: Gibson, Scott M., et al.
Publicado: (2013) -
Construction of citrus gene coexpression networks from microarray data using random matrix theory
por: Du, Dongliang, et al.
Publicado: (2015) -
A global test for gene‐gene interactions based on random matrix theory
por: Frost, H. Robert, et al.
Publicado: (2016) -
Unsupervised gene set testing based on random matrix theory
por: Frost, H. Robert, et al.
Publicado: (2016) -
Identification of hub genes and construction of diagnostic nomogram model in schizophrenia
por: Zhang, Chi, et al.
Publicado: (2022)