Cargando…
Complementation of Lymphotoxin α Knockout Mice with Tumor Necrosis Factor–expressing Transgenes Rectifies Defective Splenic Structure and Function
Lymphotoxin (LT)α knockout mice, as well as double LTα/tumor necrosis factor (TNF) knockout mice, show a severe splenic disorganization with nonsegregating T/B cell zones and complete absence of primary B cell follicles, follicular dendritic cell (FDC) networks, and germinal centers. In contrast, as...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213356/ https://www.ncbi.nlm.nih.gov/pubmed/9705956 |
Sumario: | Lymphotoxin (LT)α knockout mice, as well as double LTα/tumor necrosis factor (TNF) knockout mice, show a severe splenic disorganization with nonsegregating T/B cell zones and complete absence of primary B cell follicles, follicular dendritic cell (FDC) networks, and germinal centers. In contrast, as shown previously and confirmed in this study, LTβ-deficient mice show much more conserved T/B cell areas and a reduced but preserved capacity to form germinal centers and FDC networks. We show here that similar to the splenic phenotype of LTβ-deficient mice, complementation of LTα knockout mice with TNF-expressing transgenes leads to a p55 TNF receptor–dependent restoration of B/T cell zone segregation and a partial preservation of primary B cell follicles, FDC networks, and germinal centers. Notably, upon lipopolysaccharide challenge, LTα knockout mice fail to produce physiological levels of TNF both in peritoneal macrophage supernatants and in their serum, indicating a coinciding deficiency in TNF expression. These findings suggest that defective TNF expression contributes to the complex phenotype of the LTα knockout mice, and uncover a predominant role for TNF and its p55 TNF receptor in supporting, even in the absence of LTα, the development and maintenance of splenic B cell follicles, FDC networks, and germinal centers. |
---|