Cargando…

Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure

L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striat...

Descripción completa

Detalles Bibliográficos
Autores principales: Scholz, Birger, Svensson, Marcus, Alm, Henrik, Sköld, Karl, Fälth, Maria, Kultima, Kim, Guigoni, Céline, Doudnikoff, Evelyne, Li, Qin, Crossman, Alan R., Bezard, Erwan, Andrén, Per E.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217596/
https://www.ncbi.nlm.nih.gov/pubmed/18270577
http://dx.doi.org/10.1371/journal.pone.0001589
Descripción
Sumario:L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it.