Cargando…

Extracellular Blockade of K(+) Channels by Tea: Results from Molecular Dynamics Simulations of the Kcsa Channel

TEA is a classical blocker of K(+) channels. From mutagenesis studies, it has been shown that external blockade by TEA is strongly dependent upon the presence of aromatic residue at Shaker position 449 which is located near the extracellular entrance to the pore (Heginbotham, L., and R. MacKinnon. 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Crouzy, Serge, Bernèche, Simon, Roux, Benoît
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233828/
https://www.ncbi.nlm.nih.gov/pubmed/11479347
Descripción
Sumario:TEA is a classical blocker of K(+) channels. From mutagenesis studies, it has been shown that external blockade by TEA is strongly dependent upon the presence of aromatic residue at Shaker position 449 which is located near the extracellular entrance to the pore (Heginbotham, L., and R. MacKinnon. 1992. Neuron. 8:483–491). The data suggest that TEA interacts simultaneously with the aromatic residues of the four monomers. The determination of the 3-D structure of the KcsA channel using X-ray crystallography (Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. Science. 280:69–77) has raised some issues that remain currently unresolved concerning the interpretation of these observations. In particular, the center of the Tyr82 side chains in KcsA (corresponding to position 449 in Shaker) forms a square of 11.8-Å side, a distance which is too large to allow simultaneous interactions of a TEA molecule with the four aromatic side chains. In this paper, the external blockade by TEA is explored by molecular dynamics simulations of an atomic model of KcsA in an explicit phospholipid bilayer with aqueous salt solution. It is observed, in qualitative accord with the experimental results, that TEA is stable when bound to the external side of the wild-type KcsA channel (with Tyr82), but is unstable when bound to a mutant channel in which the tyrosine residue has been substituted by a threonine. The free energy profile of TEA relative to the pore is calculated using umbrella sampling simulations to characterize quantitatively the extracellular blockade. It is found, in remarkable agreement with the experiment, that the TEA is more stably bound by 2.3 kcal/mol to the channel with four tyrosine residues. In the case of the wild-type KcsA channel, TEA (which has the shape of a flattened oblate spheroid) acts as an ideal plug blocking the pore. In contrast, it is considerably more off-centered and tilted in the case of the mutant channel. The enhanced stability conferred by the tyrosine residues does not arise from Π–cation interactions, but appears to be due to differences in the hydration structure of the TEA. Finally, it is shown that the experimentally observed voltage dependence of TEA block, which is traditionally interpreted in terms of the physical position of the TEA along the axis of the pore, must arise indirectly via coupling with the ions in the pore.