Cargando…

CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction

We describe CONTRAST, a gene predictor which directly incorporates information from multiple alignments rather than employing phylogenetic models. This is accomplished through the use of discriminative machine learning techniques, including a novel training algorithm. We use a two-stage approach, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Gross, Samuel S, Do, Chuong B, Sirota, Marina, Batzoglou, Serafim
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246271/
https://www.ncbi.nlm.nih.gov/pubmed/18096039
http://dx.doi.org/10.1186/gb-2007-8-12-r269
_version_ 1782150755493347328
author Gross, Samuel S
Do, Chuong B
Sirota, Marina
Batzoglou, Serafim
author_facet Gross, Samuel S
Do, Chuong B
Sirota, Marina
Batzoglou, Serafim
author_sort Gross, Samuel S
collection PubMed
description We describe CONTRAST, a gene predictor which directly incorporates information from multiple alignments rather than employing phylogenetic models. This is accomplished through the use of discriminative machine learning techniques, including a novel training algorithm. We use a two-stage approach, in which a set of binary classifiers designed to recognize coding region boundaries is combined with a global model of gene structure. CONTRAST predicts exact coding region structures for 65% more human genes than the previous state-of-the-art method, misses 46% fewer exons and displays comparable gains in specificity.
format Text
id pubmed-2246271
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-22462712008-05-09 CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction Gross, Samuel S Do, Chuong B Sirota, Marina Batzoglou, Serafim Genome Biol Method We describe CONTRAST, a gene predictor which directly incorporates information from multiple alignments rather than employing phylogenetic models. This is accomplished through the use of discriminative machine learning techniques, including a novel training algorithm. We use a two-stage approach, in which a set of binary classifiers designed to recognize coding region boundaries is combined with a global model of gene structure. CONTRAST predicts exact coding region structures for 65% more human genes than the previous state-of-the-art method, misses 46% fewer exons and displays comparable gains in specificity. BioMed Central 2007 2007-12-20 /pmc/articles/PMC2246271/ /pubmed/18096039 http://dx.doi.org/10.1186/gb-2007-8-12-r269 Text en Copyright © 2007 Gross et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Gross, Samuel S
Do, Chuong B
Sirota, Marina
Batzoglou, Serafim
CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title_full CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title_fullStr CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title_full_unstemmed CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title_short CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
title_sort contrast: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246271/
https://www.ncbi.nlm.nih.gov/pubmed/18096039
http://dx.doi.org/10.1186/gb-2007-8-12-r269
work_keys_str_mv AT grosssamuels contrastadiscriminativephylogenyfreeapproachtomultipleinformantdenovogeneprediction
AT dochuongb contrastadiscriminativephylogenyfreeapproachtomultipleinformantdenovogeneprediction
AT sirotamarina contrastadiscriminativephylogenyfreeapproachtomultipleinformantdenovogeneprediction
AT batzoglouserafim contrastadiscriminativephylogenyfreeapproachtomultipleinformantdenovogeneprediction