Cargando…
Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions
BACKGROUND: Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the co...
Autores principales: | Levitsky, Victor G, Ignatieva, Elena V, Ananko, Elena A, Turnaev, Igor I, Merkulova, Tatyana I, Kolchanov, Nikolay A, Hodgman, TC |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265442/ https://www.ncbi.nlm.nih.gov/pubmed/18093302 http://dx.doi.org/10.1186/1471-2105-8-481 |
Ejemplares similares
-
Recognition of interferon-inducible sites, promoters, and enhancers
por: Ananko, Elena A, et al.
Publicado: (2007) -
Human Genes Encoding Transcription Factors and Chromatin-Modifying Proteins Have Low Levels of Promoter Polymorphism: A Study of 1000 Genomes Project Data
por: Ignatieva, Elena V., et al.
Publicado: (2015) -
Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
por: Levitsky, Victor G, et al.
Publicado: (2014) -
Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset
por: Ignatieva, Elena V., et al.
Publicado: (2014) -
A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package
por: Levitsky, Victor, et al.
Publicado: (2019)