Cargando…

Nuclear polyglutamine-containing protein aggregates as active proteolytic centers

Protein aggregates and nuclear inclusions (NIs) containing components of the ubiquitin–proteasome system (UPS), expanded polyglutamine (polyQ) proteins, and transcriptional coactivators characterize cellular responses to stress and are hallmarks of neurodegenerative diseases. The biological function...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Min, Singer, Lena, Scharf, Andrea, von Mikecz, Anna
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265588/
https://www.ncbi.nlm.nih.gov/pubmed/18283109
http://dx.doi.org/10.1083/jcb.200708131
Descripción
Sumario:Protein aggregates and nuclear inclusions (NIs) containing components of the ubiquitin–proteasome system (UPS), expanded polyglutamine (polyQ) proteins, and transcriptional coactivators characterize cellular responses to stress and are hallmarks of neurodegenerative diseases. The biological function of polyQ-containing aggregates is unknown. To analyze proteasomal activity within such aggregates, we present a nanoparticle (NP)-based method that enables controlled induction of sodium dodecyl sulfate–resistant inclusions of endogenous nuclear proteins while normal regulatory mechanisms remain in place. Consistent with the idea that the UPS maintains quality control, inhibition of proteasomal proteolysis promotes extra large protein aggregates (1.4–2 μm), whereas formation of NP-induced NIs is found to be inversely correlated to proteasome activation. We show that global proteasomal proteolysis increases in NP-treated nuclei and, on the local level, a subpopulation of NIs overlaps with focal domains of proteasome-dependent protein degradation. These results suggest that inclusions in the nucleus constitute active proteolysis modules that may serve to concentrate and decompose damaged, malfolded, or misplaced proteins.