Cargando…
Statistical Modeling of Transcription Factor Binding Affinities Predicts Regulatory Interactions
Recent experimental and theoretical efforts have highlighted the fact that binding of transcription factors to DNA can be more accurately described by continuous measures of their binding affinities, rather than a discrete description in terms of binding sites. While the binding affinities can be pr...
Autores principales: | Manke, Thomas, Roider, Helge G., Vingron, Martin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266803/ https://www.ncbi.nlm.nih.gov/pubmed/18369429 http://dx.doi.org/10.1371/journal.pcbi.1000039 |
Ejemplares similares
-
PASTAA: identifying transcription factors associated with sets of co-regulated genes
por: Roider, Helge G., et al.
Publicado: (2009) -
Detection of interacting transcription factors in human tissues using predicted DNA binding affinity
por: Myšičková, Alena, et al.
Publicado: (2012) -
Predicting gene expression in T cell differentiation from histone modifications and transcription factor binding affinities by linear mixture models
por: Costa, Ivan G, et al.
Publicado: (2011) -
CpG-depleted promoters harbor tissue-specific transcription factor binding signals—implications for motif overrepresentation analyses
por: Roider, Helge G., et al.
Publicado: (2009) -
TransFind—predicting transcriptional regulators for gene sets
por: Kiełbasa, Szymon M., et al.
Publicado: (2010)