Cargando…

Folding and Unfolding in the Blue Copper Protein Rusticyanin: Role of the Oxidation State

The unfolding process of the blue copper protein rusticyanin has been studied from the structural and the thermodynamic points of view at two pH values (pH 2.5 and 7.0). When Rc unfolds, copper ion remains bound to the polypeptide chain. Nuclear magnetic resonance data suggest that three of the copp...

Descripción completa

Detalles Bibliográficos
Autores principales: Alcaraz, Luis A., Gómez, Javier, Ramírez, Pablo, Calvente, Juan J., Andreu, Rafael, Donaire, Antonio
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267886/
https://www.ncbi.nlm.nih.gov/pubmed/18354738
http://dx.doi.org/10.1155/2007/54232
Descripción
Sumario:The unfolding process of the blue copper protein rusticyanin has been studied from the structural and the thermodynamic points of view at two pH values (pH 2.5 and 7.0). When Rc unfolds, copper ion remains bound to the polypeptide chain. Nuclear magnetic resonance data suggest that three of the copper ligands in the folded state are bound to the metal ion in the unfolded form, while the other native ligand is detached. These structural changes are reflected in the redox potentials of the protein in both folded and unfolded forms. The affinities of the copper ion in both redox states have been also determined at the two specified pH values. The results indicate that the presence of two histidine ligands in the folded protein can compensate the change in the net charge that the copper ion receives from their ligands, while, in the unfolded protein, charges of aminoacids are completely transferred to the copper ion, altering decisively the relative stability of its two-redox states.