Cargando…
DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Artemis are classical nonhomologous DNA end-joining (C-NHEJ) factors required for joining a subset of DNA double-strand breaks (DSB), particularly those requiring end processing. In mature B cells, activation-induced cytidine deaminas...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275379/ https://www.ncbi.nlm.nih.gov/pubmed/18316419 http://dx.doi.org/10.1084/jem.20080044 |
Sumario: | The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Artemis are classical nonhomologous DNA end-joining (C-NHEJ) factors required for joining a subset of DNA double-strand breaks (DSB), particularly those requiring end processing. In mature B cells, activation-induced cytidine deaminase (AID) initiates class switch recombination (CSR) by introducing lesions into S regions upstream of two recombining C(H) exons, which are processed into DSBs and rejoined by C-NHEJ to complete CSR. The function of DNA-PKcs in CSR has been controversial with some reports but not others showing that DNA-PKcs–deficient mice are significantly impaired for CSR. Artemis-deficient B cells reportedly undergo CSR at normal levels. Overall, it is still not known whether there are any CSR-associated DSBs that require DNA-PKcs and/or Artemis to be joined. Here, we have used an immunoglobulin (Ig)H locus-specific fluorescent in situ hybridization assay to unequivocally demonstrate that both DNA-PKcs and, unexpectedly, Artemis are necessary for joining a subset of AID-dependent DSBs. In the absence of either factor, B cells activated for CSR frequently generate AID-dependent IgH locus chromosomal breaks and translocations. We also find that under specific activation conditions, DNA-PKcs(−/−) B cells with chromosomal breaks are eliminated or at least prevented from progressing to metaphase via a p53-dependent response. |
---|