Cargando…

A Residue at the Cytoplasmic Entrance of BK-Type Channels Regulating Single-Channel Opening by Its Hydrophobicity

Single large-conductance calcium-activated K(+) (BK) channels encoded by the mSlo gene usually have synchronous gating, but a Drosophila dSlo (A2/C2/E2/G5/10) splice variant (dSlo1A) exhibits very flickery openings. To probe this difference in gating, we constructed a mutant I323T. This channel exhi...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Zhaohua, Lv, Caixia, Yi, Hong, Xiong, Yu, Wu, Yingliang, Li, Wenxin, Xu, Tao, Ding, Jiuping
Formato: Texto
Lenguaje:English
Publicado: The Biophysical Society 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292367/
https://www.ncbi.nlm.nih.gov/pubmed/18400952
http://dx.doi.org/10.1529/biophysj.107.120022
Descripción
Sumario:Single large-conductance calcium-activated K(+) (BK) channels encoded by the mSlo gene usually have synchronous gating, but a Drosophila dSlo (A2/C2/E2/G5/10) splice variant (dSlo1A) exhibits very flickery openings. To probe this difference in gating, we constructed a mutant I323T. This channel exhibits four subconductance levels similar to those of dSlo1A. Rectification of the single-channel current-voltage relation of I323T decreased as [Ca(2+) ](in) increased from 10 to 300 μM. Mutagenesis suggests that the hydrophobicity of the residue at the position is important for the wild-type gating; i.e., increasing hydrophobicity prolongs open duration. Molecular dynamics simulation suggests that four hydrophobic pore-lining residues at position 323 of mSlo act cooperatively in a “shutter-like” mechanism gating the permeation of K(+) ions. Rate-equilibrium free energy relations analysis shows that the four I323 residues in an mSlo channel have a conformation 65% similar to the closed conformation during gating. Based on these observations, we suggest that the appearance of rectification and substates of BK-type channels arise from a reduction of the cooperativity among these four residues and a lower probability of being open.