Cargando…
Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells
BACKGROUND: Ambient air pollution is associated with increased cardiovascular morbidity and mortality. We have found that exposure to ambient ultrafine particulate matter, highly enriched in redox cycling organic chemicals, promotes atherosclerosis in mice. We hypothesize that these pro-oxidative ch...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323217/ https://www.ncbi.nlm.nih.gov/pubmed/17655762 http://dx.doi.org/10.1186/gb-2007-8-7-r149 |
_version_ | 1782152625386422272 |
---|---|
author | Gong, Ke Wei Zhao, Wei Li, Ning Barajas, Berenice Kleinman, Michael Sioutas, Constantinos Horvath, Steve Lusis, Aldons J Nel, Andre Araujo, Jesus A |
author_facet | Gong, Ke Wei Zhao, Wei Li, Ning Barajas, Berenice Kleinman, Michael Sioutas, Constantinos Horvath, Steve Lusis, Aldons J Nel, Andre Araujo, Jesus A |
author_sort | Gong, Ke Wei |
collection | PubMed |
description | BACKGROUND: Ambient air pollution is associated with increased cardiovascular morbidity and mortality. We have found that exposure to ambient ultrafine particulate matter, highly enriched in redox cycling organic chemicals, promotes atherosclerosis in mice. We hypothesize that these pro-oxidative chemicals could synergize with oxidized lipid components generated in low-density lipoprotein particles to enhance vascular inflammation and atherosclerosis. RESULTS: We have used human microvascular endothelial cells (HMEC) to study the combined effects of a model air pollutant, diesel exhaust particles (DEP), and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (ox-PAPC) on genome-wide gene expression. We treated the cells in triplicate wells with an organic DEP extract, ox-PAPC at various concentrations, or combinations of both for 4 hours. Gene-expression profiling showed that both the DEP extract and ox-PAPC co-regulated a large number of genes. Using network analysis to identify coexpressed gene modules, we found three modules that were most highly enriched in genes that were differentially regulated by the stimuli. These modules were also enriched in synergistically co-regulated genes and pathways relevant to vascular inflammation. We validated this synergy in vivo by demonstrating that hypercholesterolemic mice exposed to ambient ultrafine particles exhibited significant upregulation of the module genes in the liver. CONCLUSION: Diesel exhaust particles and oxidized phospholipids synergistically affect the expression profile of several gene modules that correspond to pathways relevant to vascular inflammatory processes such as atherosclerosis. |
format | Text |
id | pubmed-2323217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23232172008-04-21 Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells Gong, Ke Wei Zhao, Wei Li, Ning Barajas, Berenice Kleinman, Michael Sioutas, Constantinos Horvath, Steve Lusis, Aldons J Nel, Andre Araujo, Jesus A Genome Biol Research BACKGROUND: Ambient air pollution is associated with increased cardiovascular morbidity and mortality. We have found that exposure to ambient ultrafine particulate matter, highly enriched in redox cycling organic chemicals, promotes atherosclerosis in mice. We hypothesize that these pro-oxidative chemicals could synergize with oxidized lipid components generated in low-density lipoprotein particles to enhance vascular inflammation and atherosclerosis. RESULTS: We have used human microvascular endothelial cells (HMEC) to study the combined effects of a model air pollutant, diesel exhaust particles (DEP), and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (ox-PAPC) on genome-wide gene expression. We treated the cells in triplicate wells with an organic DEP extract, ox-PAPC at various concentrations, or combinations of both for 4 hours. Gene-expression profiling showed that both the DEP extract and ox-PAPC co-regulated a large number of genes. Using network analysis to identify coexpressed gene modules, we found three modules that were most highly enriched in genes that were differentially regulated by the stimuli. These modules were also enriched in synergistically co-regulated genes and pathways relevant to vascular inflammation. We validated this synergy in vivo by demonstrating that hypercholesterolemic mice exposed to ambient ultrafine particles exhibited significant upregulation of the module genes in the liver. CONCLUSION: Diesel exhaust particles and oxidized phospholipids synergistically affect the expression profile of several gene modules that correspond to pathways relevant to vascular inflammatory processes such as atherosclerosis. BioMed Central 2007 2007-07-26 /pmc/articles/PMC2323217/ /pubmed/17655762 http://dx.doi.org/10.1186/gb-2007-8-7-r149 Text en Copyright © 2007 Gong et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Gong, Ke Wei Zhao, Wei Li, Ning Barajas, Berenice Kleinman, Michael Sioutas, Constantinos Horvath, Steve Lusis, Aldons J Nel, Andre Araujo, Jesus A Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title | Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title_full | Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title_fullStr | Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title_full_unstemmed | Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title_short | Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
title_sort | air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323217/ https://www.ncbi.nlm.nih.gov/pubmed/17655762 http://dx.doi.org/10.1186/gb-2007-8-7-r149 |
work_keys_str_mv | AT gongkewei airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT zhaowei airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT lining airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT barajasberenice airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT kleinmanmichael airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT sioutasconstantinos airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT horvathsteve airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT lusisaldonsj airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT nelandre airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells AT araujojesusa airpollutantchemicalsandoxidizedlipidsexhibitgenomewidesynergisticeffectsonendothelialcells |