Cargando…

siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P(3)-mTOR signaling pathway as a primary regulator of transferrin uptake

BACKGROUND: Iron uptake via endocytosis of iron-transferrin-transferrin receptor complexes is a rate-limiting step for cell growth, viability and proliferation in tumor cells as well as non-transformed cells such as activated lymphocytes. Signaling pathways that regulate transferrin uptake have not...

Descripción completa

Detalles Bibliográficos
Autores principales: Galvez, Thierry, Teruel, Mary N, Heo, Won Do, Jones, Joshua T, Kim, Man Lyang, Liou, Jen, Myers, Jason W, Meyer, Tobias
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323231/
https://www.ncbi.nlm.nih.gov/pubmed/17640392
http://dx.doi.org/10.1186/gb-2007-8-7-r142
Descripción
Sumario:BACKGROUND: Iron uptake via endocytosis of iron-transferrin-transferrin receptor complexes is a rate-limiting step for cell growth, viability and proliferation in tumor cells as well as non-transformed cells such as activated lymphocytes. Signaling pathways that regulate transferrin uptake have not yet been identified. RESULTS: We surveyed the human signaling proteome for regulators that increase or decrease transferrin uptake by screening 1,804 dicer-generated signaling small interfering RNAs using automated quantitative imaging. In addition to known transport proteins, we identified 11 signaling proteins that included a striking signature set for the phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3)-target of rapamycin (mTOR) signaling pathway. We show that the PI3K-mTOR signaling pathway is a positive regulator of transferrin uptake that increases the number of transferrin receptors per endocytic vesicle without affecting endocytosis or recycling rates. CONCLUSION: Our study identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a new regulator of iron-transferrin uptake and serves as a proof-of-concept that targeted RNA interference screens of the signaling proteome provide a powerful and unbiased approach to discover or rank signaling pathways that regulate a particular cell function.