Cargando…
Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo
BACKGROUND: Modified Vaccinia Ankara (MVA) is a highly attenuated strain of vaccinia virus (VV) that has lost approximately 15% of the VV genome, along with the ability to replicate in most mammalian cells. It has demonstrated impressive safety and immunogenicity profile in both preclinical and clin...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359732/ https://www.ncbi.nlm.nih.gov/pubmed/18412969 http://dx.doi.org/10.1186/1471-2172-9-15 |
_version_ | 1782152901274107904 |
---|---|
author | Liu, Luzheng Chavan, Rahul Feinberg, Mark B |
author_facet | Liu, Luzheng Chavan, Rahul Feinberg, Mark B |
author_sort | Liu, Luzheng |
collection | PubMed |
description | BACKGROUND: Modified Vaccinia Ankara (MVA) is a highly attenuated strain of vaccinia virus (VV) that has lost approximately 15% of the VV genome, along with the ability to replicate in most mammalian cells. It has demonstrated impressive safety and immunogenicity profile in both preclinical and clinical studies, and is being actively explored as a promising vaccine vector for a number of infectious diseases and malignancies. However, little is known about how MVA interacts with the host immune system constituents, especially dendritic cells (DCs), to induce strong immune responses despite its inability to replicate in vivo. Using in vitro and in vivo murine models, we systematically investigated the susceptibility of murine DCs to MVA infection, and the immunological consequences of the infection. RESULTS: Our data demonstrate that MVA preferentially infects professional antigen presenting cells, especially DCs, among all the subsets of hematolymphoid cells. In contrast to the reported blockage of DC maturation and function upon VV infection, DCs infected by MVA undergo phenotypic maturation and produce innate cytokine IFN-α within 18 h of infection. Substantial apoptosis of MVA-infected DCs occurs after 12 h following infection and the apoptotic DCs are readily phagocytosed by uninfected DCs. Using MHC class I – deficient mice, we showed that both direct and cross-presentation of viral Ags are likely to be involved in generating viral-specific CD8(+ )T cell responses. Finally, DC depletion abrogated the T cell activation in vivo. CONCLUSION: We present the first in vivo evidence that among hematolymphoid cells, DCs are the most susceptible targets for MVA infection, and DC-mediated Ag presentation is required for the induction of MVA-specific immune responses. These results provide important information concerning the mechanisms by which strong immune responses are elicited to MVA-encoded antigens and may inform efforts to further improve the immunogenicity of this already promising vaccine vector. |
format | Text |
id | pubmed-2359732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23597322008-04-30 Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo Liu, Luzheng Chavan, Rahul Feinberg, Mark B BMC Immunol Research Article BACKGROUND: Modified Vaccinia Ankara (MVA) is a highly attenuated strain of vaccinia virus (VV) that has lost approximately 15% of the VV genome, along with the ability to replicate in most mammalian cells. It has demonstrated impressive safety and immunogenicity profile in both preclinical and clinical studies, and is being actively explored as a promising vaccine vector for a number of infectious diseases and malignancies. However, little is known about how MVA interacts with the host immune system constituents, especially dendritic cells (DCs), to induce strong immune responses despite its inability to replicate in vivo. Using in vitro and in vivo murine models, we systematically investigated the susceptibility of murine DCs to MVA infection, and the immunological consequences of the infection. RESULTS: Our data demonstrate that MVA preferentially infects professional antigen presenting cells, especially DCs, among all the subsets of hematolymphoid cells. In contrast to the reported blockage of DC maturation and function upon VV infection, DCs infected by MVA undergo phenotypic maturation and produce innate cytokine IFN-α within 18 h of infection. Substantial apoptosis of MVA-infected DCs occurs after 12 h following infection and the apoptotic DCs are readily phagocytosed by uninfected DCs. Using MHC class I – deficient mice, we showed that both direct and cross-presentation of viral Ags are likely to be involved in generating viral-specific CD8(+ )T cell responses. Finally, DC depletion abrogated the T cell activation in vivo. CONCLUSION: We present the first in vivo evidence that among hematolymphoid cells, DCs are the most susceptible targets for MVA infection, and DC-mediated Ag presentation is required for the induction of MVA-specific immune responses. These results provide important information concerning the mechanisms by which strong immune responses are elicited to MVA-encoded antigens and may inform efforts to further improve the immunogenicity of this already promising vaccine vector. BioMed Central 2008-04-15 /pmc/articles/PMC2359732/ /pubmed/18412969 http://dx.doi.org/10.1186/1471-2172-9-15 Text en Copyright © 2008 Liu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, Luzheng Chavan, Rahul Feinberg, Mark B Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title | Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title_full | Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title_fullStr | Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title_full_unstemmed | Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title_short | Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo |
title_sort | dendritic cells are preferentially targeted among hematolymphocytes by modified vaccinia virus ankara and play a key role in the induction of virus-specific t cell responses in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359732/ https://www.ncbi.nlm.nih.gov/pubmed/18412969 http://dx.doi.org/10.1186/1471-2172-9-15 |
work_keys_str_mv | AT liuluzheng dendriticcellsarepreferentiallytargetedamonghematolymphocytesbymodifiedvacciniavirusankaraandplayakeyroleintheinductionofvirusspecifictcellresponsesinvivo AT chavanrahul dendriticcellsarepreferentiallytargetedamonghematolymphocytesbymodifiedvacciniavirusankaraandplayakeyroleintheinductionofvirusspecifictcellresponsesinvivo AT feinbergmarkb dendriticcellsarepreferentiallytargetedamonghematolymphocytesbymodifiedvacciniavirusankaraandplayakeyroleintheinductionofvirusspecifictcellresponsesinvivo |