Cargando…

Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy

Prognosis for patients suffering from malignant glioma has not substantially improved. Specific immunotherapy as a novel treatment concept critically depends on target antigens, which are highly overexpressed in the majority of gliomas, but the number of such antigens is still very limited. SOX2 was...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmitz, M, Temme, A, Senner, V, Ebner, R, Schwind, S, Stevanovic, S, Wehner, R, Schackert, G, Schackert, H K, Fussel, M, Bachmann, M, Rieber, E P, Weigle, B
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360145/
https://www.ncbi.nlm.nih.gov/pubmed/17375044
http://dx.doi.org/10.1038/sj.bjc.6603696
Descripción
Sumario:Prognosis for patients suffering from malignant glioma has not substantially improved. Specific immunotherapy as a novel treatment concept critically depends on target antigens, which are highly overexpressed in the majority of gliomas, but the number of such antigens is still very limited. SOX2 was identified by screening an expression database for transcripts that are overexpressed in malignant glioma, but display minimal expression in normal tissues. Expression of SOX2 mRNA was further investigated in tumour and normal tissues by real-time PCR. Compared to cDNA from pooled normal brain, SOX2 was overexpressed in almost all (9 out of 10) malignant glioma samples, whereas expression in other, non-malignant tissues was almost negligible. SOX2 protein expression in glioma cell lines and tumour tissues was verified by Western blot and immunofluorescence. Immunohistochemistry demonstrated SOX2 protein expression in all malignant glioma tissues investigated ranging from 6 to 66% stained tumour cells. Human leucocyte antigen-A(*)0201-restricted SOX2-derived peptides were tested for the activation of glioma-reactive CD8+ cytotoxic T lymphocytes (CTLs). Specific CTLs were raised against the peptide TLMKKDKYTL and were capable of lysing glioma cells. The abundant and glioma-restricted overexpression of SOX2 and the generation of SOX2-specific and tumour-reactive CTLs may recommend this antigen as target for T-cell-based immunotherapy of glioma.