Cargando…
Effect of a cachectic factor on carbohydrate metabolism and attenuation by eicosapentaenoic acid
The effect of a proteolysis-inducing factor (PIF), produced by cachexia-inducing tumours on glucose utilization by different tissues and the effect of pretreatment with the polyunsaturated fatty acid eicosapentaenoic acid (EPA), has been determined using the 2-deoxyglucose tracer technique. Mice rec...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362365/ https://www.ncbi.nlm.nih.gov/pubmed/10376976 http://dx.doi.org/10.1038/sj.bjc.6690490 |
Sumario: | The effect of a proteolysis-inducing factor (PIF), produced by cachexia-inducing tumours on glucose utilization by different tissues and the effect of pretreatment with the polyunsaturated fatty acid eicosapentaenoic acid (EPA), has been determined using the 2-deoxyglucose tracer technique. Mice receiving PIF showed a profound depression of body weight (2.3 g) over a 24-h period, which was completely abolished by pretreatment with a monoclonal antibody to PIF or by 3 days pretreatment with EPA at 500 mg kg(−1). Animals receiving PIF exhibited a marked hypoglycaemia, which was effectively reversed by both antibody and EPA pretreatment. There was an increase in glucose utilization by brain, heart and brown fat, but a decrease by kidney, white fat, diaphragm and gastrocnemius muscle after administration of PIF. Changes in organ glucose consumption were attenuated by either monoclonal antibody, EPA, or both. There was a decrease in 2-deoxyglucose uptake by C(2) C(12) myoblasts in vitro, which was attenuated by EPA. This suggests a direct effect of PIF on glucose uptake by skeletal muscle. These results suggest that in addition to a direct catabolic effect on skeletal muscle PIF has a profound effect on glucose utilization during cachexia. © 1999 Cancer Research Campaign |
---|