Cargando…

CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether

The mitotic kinesin centromere protein E (CENP-E) is an essential kinetochore component that directly contributes to the capture and stabilization of spindle microtubules by kinetochores. Although reduction in CENP-E leads to high rates of whole chromosome missegregation, neither its properties as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yumi, Heuser, John E., Waterman, Clare M., Cleveland, Don W.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364708/
https://www.ncbi.nlm.nih.gov/pubmed/18443223
http://dx.doi.org/10.1083/jcb.200802189
Descripción
Sumario:The mitotic kinesin centromere protein E (CENP-E) is an essential kinetochore component that directly contributes to the capture and stabilization of spindle microtubules by kinetochores. Although reduction in CENP-E leads to high rates of whole chromosome missegregation, neither its properties as a microtubule-dependent motor nor how it contributes to the dynamic linkage between kinetochores and microtubules is known. Using single-molecule assays, we demonstrate that CENP-E is a very slow, highly processive motor that maintains microtubule attachment for long periods. Direct visualization of full-length Xenopus laevis CENP-E reveals a highly flexible 230-nm coiled coil separating its kinetochore-binding and motor domains. We also show that full-length CENP-E is a slow plus end–directed motor whose activity is essential for metaphase chromosome alignment. We propose that the highly processive microtubule-dependent motor activity of CENP-E serves to power chromosome congression and provides a flexible, motile tether linking kinetochores to dynamic spindle microtubules.