Cargando…
Efficiency of multiple imputation to test for association in the presence of missing data
The presence of missing data in association studies is an important problem, particularly with high-density single-nucleotide polymorphism (SNP) maps, because the probability that at least one genotype is missing dramatically increases with the number of markers. A possible strategy is to simply ign...
Autores principales: | Croiseau, Pascal, Bardel, Claire, Génin, Emmanuelle |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367517/ https://www.ncbi.nlm.nih.gov/pubmed/18466521 |
Ejemplares similares
-
Dealing with missing phase and missing data in phylogeny-based analysis
por: Bardel, Claire, et al.
Publicado: (2007) -
Imputation methods for missing data for polygenic models
por: Fridley, Brooke, et al.
Publicado: (2003) -
Single versus multiple imputation for genotypic data
por: Fridley, Brooke L, et al.
Publicado: (2009) -
Analysis of North American Rheumatoid Arthritis Consortium data using a penalized logistic regression approach
por: Croiseau, Pascal, et al.
Publicado: (2009) -
Missing value imputation for microRNA expression data by using a GO-based similarity measure
por: Yang, Yang, et al.
Publicado: (2016)