Cargando…
Normalizing a large number of quantitative traits using empirical normal quantile transformation
Variance-components and regression-based methods are frequently used to map quantitative trait loci. The normality of the trait values is usually assumed and violation of this assumption can have a detrimental effect on the power and type I error of such analyses. Various transformations can be used...
Autores principales: | Peng, Bo, Yu, Robert K, DeHoff, Kevin L, Amos, Christopher I |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367615/ https://www.ncbi.nlm.nih.gov/pubmed/18466501 |
Ejemplares similares
-
Smoothing of the bivariate LOD score for non-normal quantitative traits
por: Buil, Alfonso, et al.
Publicado: (2005) -
On normality, ethnicity, and missing values in quantitative trait locus mapping
por: Labbe, Aurélie, et al.
Publicado: (2005) -
Seeking gene relationships in gene expression data using support vector machine regression
por: Yu, Robert, et al.
Publicado: (2007) -
Empirically derived phenotypic subgroups – qualitative and quantitative trait analyses
por: Wilcox, Marsha A, et al.
Publicado: (2003) -
A quantile-based method for association mapping of quantitative phenotypes: an application to rheumatoid arthritis phenotypes
por: Ghosh, Saurabh, et al.
Publicado: (2009)