Cargando…

Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides

In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2′,4′-bridged nucleotides and three types of 2′,4′-bridged nucleoside-5′-triphospates with different bridging structures. Among the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuwahara, Masayasu, Obika, Satoshi, Nagashima, Jun-ichi, Ohta, Yuki, Suto, Yoshiyuki, Ozaki, Hiroaki, Sawai, Hiroaki, Imanishi, Takeshi
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490744/
https://www.ncbi.nlm.nih.gov/pubmed/18583360
http://dx.doi.org/10.1093/nar/gkn404
Descripción
Sumario:In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2′,4′-bridged nucleotides and three types of 2′,4′-bridged nucleoside-5′-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2′-O,4′-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2′,4′-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2′,4′-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2′,4′-bridged nucleotides into extending strands using 2′,4′-bridged nucleoside-5′-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.