Cargando…
The role of transcriptional activator GATA-1 at human β-globin HS2
GATA-1 is an erythroid activator that binds β-globin gene promoters and DNase I hypersensitive sites (HSs) of the β-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504316/ https://www.ncbi.nlm.nih.gov/pubmed/18586828 http://dx.doi.org/10.1093/nar/gkn368 |
Sumario: | GATA-1 is an erythroid activator that binds β-globin gene promoters and DNase I hypersensitive sites (HSs) of the β-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that binds to HS2, nor was DNase I hypersensitivity at HS2 or the promoter of a linked ε-globin gene altered. Reduction of NF-E2 using RNAi confirmed the overall importance of this activator in establishing LCR HSs. However, recruitment of the histone acetyltransferase CBP and RNA pol II to HS2 was diminished by GATA-1 loss. Transcription of ε-globin was severely compromised with loss of RNA pol II from the transcription start site and reduction of H3 acetylation and H3K4 di- and tri-methylation in coding sequences. In contrast, widespread detection of H3K4 mono-methylation was unaffected by loss of GATA-1 in HS2. These results support the idea that GATA-1 interaction in HS2 has a prominent and direct role in co-activator and pol II recruitment conferring active histone tail modifications and transcription activation to a target gene but that it does not, by itself, play a major role in establishing DNase I hypersensitivity. |
---|