Cargando…
The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease
Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2515306/ https://www.ncbi.nlm.nih.gov/pubmed/18652670 http://dx.doi.org/10.1186/1750-1326-3-9 |
Sumario: | Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M(1 )muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD. |
---|